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Abstract

Bayesian statistical modeling and inference allow scientists, engineers, and companies
to learn from data while incorporating prior knowledge, sharing power across exper-
iments via hierarchical models, quantifying their uncertainty about what they have
learned, and making predictions about an uncertain future. While Bayesian inference
is conceptually straightforward, in practice calculating expectations with respect to
the posterior can rarely be done in closed form. Hence, users of Bayesian models must
turn to approximate inference methods. But modern statistical applications create
many challenges: the latent parameter is often high-dimensional, the models can be
complex, and there are large amounts of data that may only be available as a stream
or distributed across many computers. Existing algorithm have so far remained un-
satisfactory because they either (1) fail to scale to large data sets, (2) provide limited
approximation quality, or (3) fail to provide guarantees on the quality of inference.

To simultaneously overcome these three possible limitations, I leverage the critical
insight that in the large-scale setting, much of the data is redundant. Therefore, it is
possible to compress data into a form that admits more efficient inference. I develop
two approaches to compressing data for improved scalability. The first is to construct
a coreset : a small, weighted subset of our data that is representative of the complete
dataset. The second, which I call PASS-GLM, is to construct an exponential family
model that approximates the original model. The data is compressed by calculating
the finite-dimensional sufficient statistics of the data under the exponential family.

An advantage of the compression approach to approximate inference is that an ap-
proximate likelihood substitutes for the original likelihood. I show how such approxi-
mate likelihoods lend them themselves to a priori analysis and develop general tools
for proving when an approximate likelihood will lead to a high-quality approximate
posterior. I apply these tools to obtain a priori guarantees on the approximate poste-
riors produced by PASS-GLM. Finally, for cases when users must rely on algorithms
that do not have a priori accuracy guarantees, I develop a method for comparing
the quality of the inferences produced by competing algorithms. The method comes
equipped with provable guarantees while also being computationally efficient.

Thesis Supervisor: Tamara Broderick
Title: ITT Career Development Assistant Professor of Electrical Engineering and
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Chapter 1

Introduction

Bayesian statistical modeling and inference allow scientists, engineers, and companies
to learn from data while incorporating prior knowledge, quantifying their uncertainty
about what they have learned, sharing of power across experiments via hierarchi-
cal models, and making predictions about an uncertain future. Bayesian methods
in particular make all these tasks conceptually straightforward, via the use of prior
distributions and Bayes’ theorem. The use of prior knowledge obtained from do-
mains experts or previous inferences can improve data-efficiency, particularly when
the amount of data is small relative to the complexity of the model. The uncertainty
quantification provided by Bayesian inference is invaluable because, particularly in
the context of decision-making, accounting for uncertainty is critical. Instead of just
obtaining a point estimate for the latent parameter, one can also calculate covari-
ances, tail probabilities, and other functionals of the posterior distribution over the
latent parameter. Consider the following examples:

∙ A self-driving car estimates that the object moving in front of it is a small
rodent scampering across the street. However, due to fog, the estimate contains
substantial uncertainty. Therefore the car slows down, avoiding a collision with
a creature that turns out to be a much-loved family dog.

∙ Using observational data, a scientist estimates the effect sizes of genes that may
cause a particular type of cancer. Genes that appear to have a substantial effect
will be investigated further in the lab, but investigating a gene is costly both
in terms of time and money. The scientist notices that a number of the genes
that have large estimated effects also have large uncertainties about the effect
sizes. Instead of chasing down these noisy leads the scientist spends her time
investigating the genes that have much greater certainty of affecting the cancer’s
growth.

∙ An ambulance is rushing a patient who just had a heart attack to the hospital.
The medics determine they must arrive within 15 minutes for the patient to
have a positive outcome. Route A is estimated to take 10 minutes while route
B is estimated to take 12 minutes. But route A has a much higher probability
than route B of taking more than 15 minutes due to uncertainty about the
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traffic conditions. Hence the ambulance driver takes route B and arrives at the
hospital in 13 minutes.

In each case, accounting for uncertainty when the agent (a car, scientist, or medic)
was making a decision led to a superior outcome. While non-Bayesian methods can
incorporate prior knowledge and uncertainty estimates, doing so tends to require ad
hoc constructions. Furthermore, when using Bayesian inference methods, there is no
need to know the exact question ahead of time. Once we have (an approximation to)
the posterior, we can interrogate it repeatedly, after which a colleague might come
along and ask her own questions.

A core challenge of Bayesian inference is applying Bayes’ theorem – that is, cal-
culating the posterior distribution. In particular, we typically want to be able to
calculate posterior expectations. However, for all but the simplest models and most
basic questions, such expectations cannot be calculated in closed form. Hence, we
must turn to approximate inference methods. Modern applications of Bayesian meth-
ods present many challenges for classical approximate inference algorithms because
any or all of the following apply: the latent parameter of interest is high-dimensional;
the models are complex and even simulating from the model may be computationally
expensive; and there are large amounts of data, which often are only available as a
stream or are distributed across many computers. To overcome these challenges we
require:

1. Scalability. Approximate inference algorithms must be applicable to datasets
with large numbers of observations. Settings with streaming or distributed data
are particularly important. Inference algorithms should also be able to operate
on high-dimensional data and high-dimensional latent parameters.

2. Arbitrary accuracy. Approximate inference algorithms should also be able
to provide arbitrary levels of accuracy, given a sufficiently large computational
budget.

3. Validation of the approximation quality. We must be able to validate the
quality of approximate posteriors output by inference algorithms. Validation
can take the form of

(a) a priori finite-time, finite-data guarantees; or

(b) post hoc quality measures that are scalable and theoretically sound.

Requirement 1 ensures that an inference algorithm is suitable for modern appli-
cations. Requirement 2 is important because applications have varying precision
requirements. For example, many scientific applications require very accurate poste-
riors while for industry prediction tasks a lower level of precision could be acceptable.
There is an inherent tension between these two requirements: greater accuracy tends
to require greater computational resources, which makes an algorithm less scalable.
Hence, the computational–statistical tradeoffs of an inference algorithm must be con-
sidered and deemed favorable in at least some regime to be worth using. Finally,
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1. Scalability 2. Arbitrary accuracy 3. Validation of approximation quality 
      A. a priori guarantees 
      B. post hoc quality measures

Inference 
methods

Tools for 
analysis

Quality 
measures

Chapter 2 Chapter 3 Chapter 4 Chapter 5

Figure 1-1: Overview of objectives and thesis structure.

Requirement 3 is necessary for practitioners to have faith in the reliability of the
decisions and conclusions they will make based on an inference algorithm’s output.
A priori guarantees (Requirement 3a) are ideal since they provide confidence even
before any inferential work is done. However, post hoc guarantees (Requirement 3b)
are also useful because a priori guarantees may be unavailable or we may wish to
compare methods which have incomparable of guarantees.

How should we approach the development of approximate inference algorithms
that will simultaneously scale to large datasets, provide attractive computational–
statistical tradeoffs, and come equipped with a priori guarantees? An important
insight, which I will repeatedly leverage in this thesis, is that in the large-scale set-
ting, much of the data can be redundant (though there may also be a small set of
data points that are distinctive). Therefore, it is possible that we can compress our
data into a form that admits more efficient inference. Approaching approximate in-
ference from this perspective makes computational–statistical tradeoffs conceptually
straightforward: less compression translates to greater accuracy but less computa-
tional savings. Chapters 2 and 3 describe two approaches to compressing data for
improved scalability. In Chapter 2, my approach is to construct a coreset : a small,
weighted subset of our data that is representative of the complete dataset. In Chap-
ter 3, I show how to construct an exponential family model that is close to the original
model. The data is then compressed by calculating the finite-dimensional sufficient
statistics of the data under the exponential family.

Another advantage of the compression approach is that it involves replacing the
original likelihood with a (deterministic) approximate likelihood. In Chapter 4, I
show how such approximate likelihoods lend them themselves to a priori analysis.
I am thus able to develop general tools for achieving Requirement 3a when using
approximate likelihoods. I apply the tools developed in Chapter 4 to obtain a priori
guarantees on the approximate posteriors produced by the methodology from Chap-
ter 3. Finally, in Chapter 5, I develop computationally efficient quality measures
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with provable guarantees, toward the goal of satisfying Requirement 3b. Fig. 1-1
provides an outline of the thesis and indicates how each chapter relates to the three
requirements.

1.1 Related Work

1.1.1 Approximate Bayesian Inference

It is difficult to find approximate inference methods that meet Requirements 1, 2, and
3a. Most existing methodologies fall into the trilemma of offering at most two out
of the three. Markov chain Monte Carlo (MCMC) methods provide an approximate
posterior, and the approximation typically becomes arbitrarily good as the amount
of computation time grows asymptotically; thereby MCMC satisfies Requirements 2
and 3a. But scalability of MCMC can be an issue. Conversely, variational Bayes
(VB) and expectation propagation (EP) [95, 139] have grown in popularity due to
their scalability to large data and models—though they typically lack guarantees
on quality (failing Requirement 3a). Furthermore, traditional variational methods
produce approximations of limited fidelity, hence failing Requirement 2. However,
some recent work has sought to overcome the latter limitation [65, 94, 115, 121, 122].

Subsampling methods have been proposed to speed up MCMC [3, 14, 15, 40, 81, 89,
91, 111, 142] and VB [71]. Only a few of these algorithms preserve accuracy guarantees
asymptotic in time (Requirement 2), and they often require restrictive assumptions.
On the scalability front (Requirement 1), many though not all subsampling MCMC
methods have been found to require examining a constant fraction of the data at each
iteration [5, 15, 17, 108, 109, 135], so the computational gains are limited. Moreover,
the random data access required by these methods may be infeasible for very large
datasets that do not fit into memory. Finally, they do not apply to streaming and
distributed data, and thus fail to fully satisfy Requirement 1.

Recently, authors have proposed subsampling methods based on piecewise deter-
ministic Markov processes (PDMPs) [20, 22, 49, 106]. These methods are promis-
ing since subsampling data here does not change the invariant distribution of the
continuous-time Markov process. But these methods have not yet been validated on
large datasets nor is it understood how subsampling affects the mixing rates of the
Markov processes.

Authors have also proposed methods for coalescing information across distributed
computation (Requirement 1) in MCMC [47, 96, 112, 123, 129], VB [26, 29], and
EP [58, 69]—and in the case of VB, across epochs as streaming data is collected [26,
29]. While these methods lead to gains in computational efficiency, most lack rigorous
justification and provide no guarantees on the quality of inference (failing Require-
ment 3a). Some approaches, such as the consensus method of Minsker et al. [96],
do have supporting theory, but cannot be made arbitrarily accurate (failing Require-
ment 2). See Angelino et al. [6] for a broader discussion of issues surrounding scalable
Bayesian inference.
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1.1.2 A priori guarantees

A priori accuracy guarantees for non-trivial models are most widely available for
Markov chain Monte Carlo methods. Quantitative convergence of MCMC is a well-
studied, though challenging, topic. Jones and Hobert [77] and Roberts and Rosenthal
[117] provide excellent, though now dated, overviews of the techniques used to ana-
lyze MCMC convergence. The primary objective in the literature is to prove specific
Markov chains are geometrically ergodic, which means that the Markov chain will
converge exponentially quickly to producing samples from to the correct distribution.
Example applications include convergence rates of the (block) Gibbs sampler for a
Bayesian hierarchical version of the one-way random effects model [78] and condi-
tions for fast convergence of parallel and simulated tempering algorithms for certain
Gaussian mixture models and mean field Ising models [145]. Recently Khare and
Hobert [80] and Choi and Hobert [32] proved, respectively, the geometric ergodic-
ity of the Bayesian Lasso algorithm [107] and the uniform geometric ergodicity of
the Polya-gamma Gibbs sampler for Bayesian logistic regression. Further examples
can be found in Ge et al. [54], Qin and Hobert [110] and Zanella and Roberts [147].
More generally, many fast convergence results are known for sampling from strongly
log-concave distributions [31, 42, 43, 45, 92, 118]

Recently, some posterior quality results have become available for variational
Bayes [4, 141, 148]. However, these are asymptotic in the number of observation,
whereas we seek non-asymptotic guarantees since uncertainty is typically relevant
precisely in the non-asymptotic regime.

1.1.3 Quality measures

Approximation quality measures have a long history, particularly in the MCMC lit-
erature where they are often called “convergence diagnostics”. A popular measure
is the Gelman-Rubin statistic [55, 56]. It requires running multiple Markov chains
and operates by comparing the inter-chain variance to the intra-chain variance. If
the inter-chain variance is much larger, this suggests the chains have not mixed well.
While simple to use, there are a number of weaknesses to the method. It may be
insufficiently expressive to detect convergence failure. Also, it only works under the
assumption that the chains are converging to the correct distribution, which is not the
case for many of the scalable MCMC algorithms discussed in Section 1.1.1 (e.g. Ahn
et al. [3], Bardenet et al. [14, 15], Korattikara et al. [81], Maire et al. [91], Welling
and Teh [142]).

Grosse et al. [64] and Cusumano-Towner and Mansinghka [37] independently in-
troduced an algorithm for stochastically estimating the symmetrized KL divergence
(known as the Jeffreys divergence) between approximate posterior samples and the
true posterior. The algorithm, which is based on bidirectional annealed importance
sampling, is exact in the case of data simulated from the underlying generative model.
To estimate performance on real data, Grosse et al. [64] propose a less direct method:
hyperparameters for the generative model are learned based on the real data, then
the Jeffreys divergence is estimated for synthetic data simulated from the model con-
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ditional on those data-dependent hyperparameters. Thus, while this approach can
provide a general indicator of MCMC performance, its results cannot be considered
a decisive means of evaluation. Also, like the Gelman-Rubin statistic, it is only ap-
plicable to asymptotically exact samplers.

A final approach is based on (kernelized) Stein discrepancies [60, 61]. Stein dis-
crepancies guarantee error bounds when calculating expectations for a large class of
functions. This class can be chosen such that the Stein discrepancy dominates weak
convergence [61], meaning it can distinguish between arbitrary distributions (unlike
the Gelman-Rubin statistic). Furthermore, it is applicable to biased samplers. A
challenge with using Stein discrepancies is computational efficiency. The original ap-
proach of Gorham and Mackey [60] requires solving an expensive linear program. The
kernel-based approach of Gorham and Mackey [61] scales quadratically in the number
of samples for evaluation.

1.2 Bayesian inference in generalized linear models

In this thesis, and particularly for the scalable inference methods developed in Chap-
ters 2 and 3, I will focus on Bayesian generalized linear models (GLMs). GLMs
combine the interpretability of linear models with the flexibility of more general out-
come distributions—including binary, ordinal, and heavy-tailed observations. For this
reason, they are some of the most widely used models by practitioners, both in iso-
lation and as a building block for more complex hierarchical models. The inference
algorithms we develop are applicable to such hierarchical models as long as the data
groups are fixed. Also GLMs are considered to be “simple” models, scaling them to
large datasets in a computationally efficient manner remains difficult.

Formally, the basic Bayesian GLM setting is as follows. Let 𝒴 ⊆ R be the observa-
tion space, 𝒳 ⊆ R𝑑 be the covariate space, and Θ ⊆ R𝑑 be the parameter space, where
𝑑 ≥ 1 denotes both the covariate and parameter dimensionality. Let𝒟 := {(x𝑛, 𝑦𝑛)}𝑁𝑛=1

be the observed data, where𝑁 ≥ 1 denotes the number of observations. Write X ∈ R𝑁×𝑑

for the matrix of all covariates and y ∈ R𝑁 for the vector of all observations. For a
single data point (x𝑛, 𝑦𝑛), a GLM likelihood can be written as

𝑝(𝑦𝑛 |x𝑛,𝜃) = 𝑝(𝑦𝑛 | 𝑔−1(x𝑛 · 𝜃)),

where 𝜇 := 𝑔−1(x𝑛 · 𝜃) is the expected value of 𝑦𝑛 and 𝑔−1 : R→ R is the inverse
link function. I will assume that the observations are independent conditional on the
covariates and the parameter:

log 𝑝(y |X,𝜃) =
∑︀𝑁

𝑛=1 log 𝑝(𝑦𝑛 | 𝑔−1(x𝑛 · 𝜃)).

I will also sometimes use the shorthand notation

𝜑(𝑦𝑛,x𝑛 · 𝜃) := log 𝑝(𝑦𝑛 | 𝑔−1(x𝑛 · 𝜃))

for the log-likelihood. I will call 𝜑(𝑦, 𝑠) := log 𝑝(𝑦 | 𝑔−1(𝑠)) the GLM mapping function.
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Examples of GLMs include some of the most widely used models in the statistical
toolbox.

Example 1.2.1 (Binary regression). For binary observations 𝑦 ∈ {±1}, the likeli-
hood model is Bernoulli, 𝑝(𝑦 = 1 |𝜇) = 𝜇, and the link function is often either the
logit 𝑔(𝜇) = log 𝜇

1−𝜇
(as in logistic regression) or the probit 𝑔(𝜇) = Φ−1(𝜇), where Φ

is the standard Gaussian CDF.

Example 1.2.2 (Poisson regression). When modeling count data 𝑦 ∈ N, the likeli-
hood model might be Poisson, 𝑝(𝑦 |𝜇) = 𝜇𝑦𝑒−𝜇/𝑦!, and 𝑔(𝜇) = log(𝜇) is the typical
log link.

Example 1.2.3 (Robust regression). For robust regression of real-valued data 𝑦 ∈ R,
the identity link 𝑔(𝜇) = 𝜇 can be paired with the Laplace likelihood

𝑝(𝑦 |𝜇) =
1

2𝑏
𝑒−|𝑦−𝜇|/𝑏,

the Cauchy likelihood

𝑝(𝑦 |𝜇) =
1

𝜋𝑏
(︁

1 + (𝑦−𝜇)2

𝑏2

)︁ ,
the “Huber” log-likelihood

log 𝑝(𝑦 |𝜇) =

{︃
−1

2
(𝑦 − 𝜇)2 |𝑠− 𝑦| ≤ 𝑏

−𝑏|𝑦 − 𝜇|+ 1
2
𝑏2 otherwise,

or the “smoothed Huber” log-likelihood

log 𝑝(𝑦 |𝜇) = −𝑏2
(︃√︂

1 +
(𝑦 − 𝜇)2

𝑏2
− 1

)︃
,

where in each case 𝑏 serves as a scale parameter.

Example 1.2.4 (Gamma regression). For positive data 𝑦 ∈ R+, the likelihood model
might be gamma, 𝑝(𝑦 |𝜇) = Γ(𝜈)−1(𝜈/𝜇)𝜈𝑦𝜈−1𝑒−𝜈𝑦/𝜇, paired with the log link.

If we place a prior 𝜋0(d𝜃) on the parameters, then a full Bayesian analysis aims to
approximate the (typically intractable) GLM posterior distribution

𝜋𝒟(d𝜃) :=
𝑝(y |X,𝜃)𝜋0(d𝜃)

ℰ𝒟
,

where ℰ𝒟 :=
∫︀
𝑝(y |X,𝜃) 𝜋0(d𝜃) is the marginal likelihood (a.k.a. the model evi-

dence). The maximum a posteriori (MAP) solution gives a point estimate of the
parameter:

𝜃MAP := arg max
𝜃∈Θ

𝜋𝒟(𝜃) = arg max
𝜃∈Θ

log 𝜋0(𝜃) + ℒ𝒟(𝜃), (1.1)
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where ℒ𝒟(𝜃) := log 𝑝(y |X,𝜃) is the data log-likelihood. The MAP problem strictly
generalizes finding the maximum likelihood estimate (MLE), since the MAP solution
equals the MLE when using the (possibly improper) prior 𝜋0(𝜃) = 1.

1.3 Computation and exponential families

In large part due to the high-dimensional integral implicit in the normalizing con-
stant, approximating the posterior via, e.g., MCMC or VB, is often prohibitively
expensive. Approximating this integral will typically require many evaluations of the
(log-)likelihood, or its gradient, and each evaluation may require Ω(𝑁) time.

Computation is much more efficient, though, if the model is in an exponential
family (EF). In the EF case, there exist functions t : 𝒴 × 𝒳 → R𝑚 and 𝜂 : Θ→ R𝑚,
such that1

log 𝑝(𝑦𝑛 |x𝑛,𝜃) = t(𝑦𝑛,x𝑛) · 𝜂(𝜃) =: ℒ𝒟,EF(𝜃; t(𝑦𝑛,x𝑛)).

Thus, if the observations are conditionally independent, we can rewrite the log-
likelihood as

ℒ𝒟(𝜃) =
∑︀𝑁

𝑛=1 ℒ𝒟,EF(𝜃; t(𝑦𝑛,x𝑛)) =: ℒ𝒟,EF(𝜃; t(𝒟)),

where t(𝒟) :=
∑︀𝑁

𝑛=1 t(𝑦𝑛,x𝑛). The sufficient statistics t(𝒟) can be calculated in𝑂(𝑁)
time, after which each evaluation of ℒ𝒟,EF(𝜃; t(𝒟)) or ∇ℒ𝒟,EF(𝜃; t(𝒟)) requires only
𝑂(1) time. Thus, instead of 𝐾 passes over 𝑁 data points (requiring 𝑂(𝑁𝐾) time),
only 𝑂(𝑁 +𝐾) time is needed. Even for moderate values of 𝑁 , the time savings can
be substantial when 𝐾 is large.

The Poisson distribution is an illustrative example of a one-parameter exponential
family with t(𝑦) = (1, 𝑦, log 𝑦!) and 𝜂(𝜃) = (𝜃, log 𝜃, 1). Thus, if we have data y (there
are no covariates), t(y) = (𝑁,

∑︀
𝑛 𝑦𝑛,

∑︀
log 𝑦𝑛!). In this case it is easy to calculate

the maximum likelihood estimate of 𝜃 from t(y) as 𝑡1(y)/𝑡0(y) = 𝑁−1
∑︀

𝑛 𝑦𝑛.

Unfortunately, GLMs rarely belong to an exponential family – even if the outcome
distribution is in an exponential family, the use of a link destroys the EF struc-
ture. In logistic regression, we write (overloading the 𝜑 notation) log 𝑝(𝑦𝑛 |x𝑛,𝜃) =
𝜑logit(𝑦𝑛x𝑛 · 𝜃), where 𝜑logit(𝑠) := − log(1 + 𝑒−𝑠). For Poisson regression with log link,
log 𝑝(𝑦𝑛 |x𝑛,𝜃) = 𝜑Poisson(𝑦𝑛,x𝑛 · 𝜃), where 𝜑Poisson(𝑦, 𝑠) := 𝑦𝑠− 𝑒𝑠 − log 𝑦!. In both
cases, we cannot express the log-likelihood as an inner product between a function
solely of the data and a function solely of the parameter.

1Our presentation is slightly different from the standard textbook account because we have im-
plicitly absorbed the base measure and log-partition function into t and 𝜂.
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1.4 Approximate Bayesian inference via likelihood
approximation

The methods I present in this thesis can be viewed as ways to approximate a non-
exponential family model log-likelihood with approximate sufficient statistics that
are of low-dimensionality compared to the amount of data. Sufficient statistics are a
classical and powerful technique in statistics and the methods in Chapters 2 and 3
are ways to adapt these venerable ideas to the modern statistical and computational
landscape. Toward this end, we wish to find functions t̃ : 𝒴𝑁 × 𝒳𝑁 → R𝑚 and
𝜂 : Θ→ R𝑚, for some 𝑚≪ 𝑁 , such that

log 𝑝(y |X,𝜃) ≈ t̃(y,X) · 𝜂(𝜃).

We call t̃(y,X) a set of approximate sufficient statistics for 𝒟. We would like to
calculate t̃(y,X) and construct 𝜂 efficiently and in such a way that 𝜂(𝜃) can be
calculated in 𝑂(𝑚𝑑) time.

In Chapter 2, we will view the data itself as a set of sufficient statistics, which we
will then attempt to approximate. For 𝑖 = 1, 2, . . . ,𝑚, let 𝜂(𝜃)𝑖 := log 𝑝(𝑦𝑛𝑖

|x𝑛𝑖
,𝜃)

for some 𝑛𝑖 ∈ [𝑁 ] and take t̃(y,X) ∈ R𝑚
+ . Together these provide a coreset approx-

imation to the data, where t̃(y,X)𝑖 denotes the weight given to the 𝑖-th datapoint
in the coreset 𝒟̃ = {(𝑦𝑛𝑖

,x𝑛𝑖
)}𝑚𝑖=1. We will show how to efficiently choose the indices

𝑛𝑖 and the weights t̃(y,X). In Chapter 3, we take a rather different approach. We
will let t̃(y,X) :=

∑︀𝑁
𝑛=1 t̃(𝑦𝑛,x𝑛), where for 𝑖 = 1, 2, . . . ,𝑚, t̃(𝑦𝑛,x𝑛)𝑖 will be a low-

degree polynomial in 𝑦𝑛, 𝑥𝑛1, 𝑥𝑛2, . . . , 𝑥𝑛𝑑. Similarly, 𝜂(𝜃)𝑖 is a low-degree polynomial
in 𝜃1, 𝜃2, . . . , 𝜃𝑑. In Chapter 4 we will develop some general tools for controlling the
error in posterior approximations based on likelihood approximations. In particular,
we will bound the Wasserstein distance between the exact and approximate posteriors
in terms of the (expected) error between the gradients of the exact and approximate
log-likelihoods. Finally, in Chapter 5 I will develop proxies for the kernel Stein dis-
crepancies (KSDs) described in Section 1.1.3 that can be computed in time almost
linear (rather than quadratic) in the number of samples, while still retaining the
theoretical soundness of KSDs.
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Chapter 2

Logistic Regression Coresets

In this chapter I leverage data redundancy to develop a scalable Bayesian inference
framework that modifies the dataset instead of the common practice of modifying the
inference algorithm. As I discussed earlier, while much of the data may be redundant,
some portion of it may be more distinctive. For example, in a large document corpus,
one news article about a hockey game may serve as an excellent representative of
hundreds or thousands of other similar pieces about hockey games. However, there
may only be a few articles about luge, so it is also important to include at least
one article about luge. Similarly, one individual’s genetic information may serve
as a strong representative of other individuals from the same ancestral population
admixture, though some individuals may be genetic outliers. My method, which can
be thought of as a preprocessing step, constructs a coreset – a small, weighted subset
of the data that approximates the full dataset [2, 50] – that can be used in many
standard inference procedures to provide posterior approximations with guaranteed
quality. The scalability of posterior inference with a coreset thus simply depends on
the coreset’s growth with the full dataset size. To the best of my knowledge, coresets
have not previously been used in a Bayesian setting.

The concept of coresets originated in computational geometry (e.g. [2]), but then
became popular in theoretical computer science as a way to efficiently solve cluster-
ing problems such as 𝑘-means and PCA (see [50, 52] and references therein). Coreset
research in the machine learning community has focused on scalable clustering in
the optimization setting [10, 11, 52, 87], with the exception of Feldman et al. [51],
who developed a coreset algorithm for Gaussian mixture models. Coreset-like ideas
have previously been explored for maximum likelihood-learning of logistic regression
models, though these methods either lack rigorous justification or have only asymp-
totic guarantees (see [68] and references therein as well as [90], which develops a
methodology applicable beyond logistic regression).

The job of the coreset in the Bayesian setting is to provide an approximation of
the full data log-likelihood up to a multiplicative error uniformly over the parameter
space. I will begin with a theoretical analysis of the quality of the posterior distribu-
tion obtained from such an approximate log-likelihood. The remainder of the chapter
develops the efficient construction of small coresets for Bayesian logistic regression.
I develop a coreset construction algorithm, the output of which uniformly approxi-
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mates the full data log-likelihood over parameter values in a ball with a user-specified
radius. The approximation guarantee holds for a given dataset with high probability.
I also obtain results showing that the boundedness of the parameter space is neces-
sary for the construction of a nontrivial coreset, as well as results characterizing the
algorithm’s expected performance under a wide class of data-generating distributions.
Our proposed algorithm is applicable in both the streaming and distributed compu-
tation settings, and the coreset can then be used by any inference algorithm which
accesses the (gradient of the) log-likelihood as a black box. Although our coreset
algorithm is specifically for logistic regression, our approach is broadly applicable to
other Bayesian generative models.

Experiments on a variety of synthetic and real-world datasets validate our approach
and demonstrate robustness to the choice of algorithm hyperparameters. An empir-
ical comparison to random subsampling shows that, in many cases, coreset-based
posteriors are orders of magnitude better in terms of maximum mean discrepancy,
including on a challenging 100-dimensional real-world dataset. Crucially, our core-
set construction algorithm adds negligible computational overhead to the inference
procedure.

2.1 Bayesian Coresets

Our aim is to construct a weighted dataset 𝒟̃ = {(𝛾𝑚, x̃𝑚, 𝑦𝑚)}𝑀𝑚=1 with 𝑀 ≪ 𝑁
such that the weighted log-likelihood ℒ̃𝒟(𝜃) =

∑︀𝑀
𝑚=1 𝛾𝑚 log 𝑝(𝑦𝑚 | x̃𝑚,𝜃) satisfies

|ℒ𝒟(𝜃)− ℒ̃𝒟(𝜃)| ≤ 𝜀|ℒ𝒟(𝜃)|, ∀𝜃 ∈ Θ. (2.1)

If 𝒟̃ satisfies Eq. (2.1), it is called an 𝜀-coreset of 𝒟, and the approximate posterior

𝜋̃𝒟(𝜃) =
exp(ℒ̃𝒟(𝜃))𝜋0(𝜃)

ℰ̃𝒟
, with ℰ̃𝒟 =

∫︁
exp(ℒ̃𝒟(𝜃))𝜋0(𝜃) d𝜃,

has a marginal likelihood ℰ̃𝒟 which approximates the true marginal likelihood ℰ𝒟,
shown by Proposition 2.1.1. Thus, from a Bayesian perspective, the 𝜀-coreset is a
useful notion of approximation.

Proposition 2.1.1. Let ℒ(𝜃) and ℒ̃(𝜃) be arbitrary non-positive log-likelihood func-
tions that satisfy |ℒ(𝜃) − ℒ̃(𝜃)| ≤ 𝜀|ℒ(𝜃)| for all 𝜃 ∈ Θ. Then for any prior 𝜋0(𝜃)
such that the marginal likelihoods

ℰ =

∫︁
exp(ℒ(𝜃))𝜋0(𝜃) d𝜃 and ℰ̃ =

∫︁
exp(ℒ̃(𝜃))𝜋0(𝜃) d𝜃

are finite, the marginal likelihoods satisfy

| log ℰ − log ℰ̃ | ≤ 𝜀| log ℰ|.
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Algorithm 1 Construction of logistic regression coreset
Require: Data 𝒟, 𝑘-clustering 𝒬, radius 𝑅 > 0, tolerance 𝜀 > 0, failure rate 𝛿 ∈

(0, 1)
1: for 𝑛 = 1, . . . , 𝑁 do ◁ calculate sensitivity upper bounds using the 𝑘-clustering
2: 𝑚𝑛 ← 𝑁

1+
∑︀𝑘

𝑖=1 |𝐺
(−𝑛)
𝑖 |𝑒−𝑅‖Z̄(−𝑛)

𝐺,𝑖
−z𝑛‖2

3: end for
4: 𝑚̄𝑁 ← 1

𝑁

∑︀𝑁
𝑛=1𝑚𝑛

5: 𝑀 ←
⌈︁
𝑐𝑚̄2

𝑁

𝜀2
[(𝑑+ 1) + log(1/𝛿)]

⌉︁
◁ coreset size; 𝑐 is from proof of Theorem A.2.1

6: for 𝑛 = 1, . . . , 𝑁 do
7: 𝑝𝑛 ← 𝑚𝑛

𝑁𝑚̄𝑁
◁ importance weights of data

8: end for
9: (𝐾1, . . . , 𝐾𝑁) ∼ Multi(𝑀, (𝑝𝑛)𝑁𝑛=1) ◁ sample data for coreset

10: for 𝑛 = 1, . . . , 𝑁 do ◁ calculate coreset weights
11: 𝛾𝑛 ← 𝐾𝑛

𝑝𝑛𝑀

12: end for
13: 𝒟̃ ← {(𝛾𝑛,x𝑛, 𝑦𝑛) | 𝛾𝑛 > 0} ◁ only keep data points with non-zero weights
14: return 𝒟̃

2.2 Coresets for Logistic Regression

2.2.1 Coreset Construction

Recall that in logistic regression, the covariates are real feature vectors x𝑛 ∈ R𝑑, the
observations are labels 𝑦𝑛 ∈ {−1, 1}, Θ ⊆ R𝑑, and the likelihood is defined as

𝑝(𝑦𝑛 |x𝑛,𝜃) = 𝑝𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑦𝑛 |x𝑛,𝜃) :=
1

1 + exp(−𝑦𝑛x𝑛 · 𝜃)
.

The analysis in this work allows any prior 𝜋0(𝜃); common choices are the Gaussian,
Cauchy [57], and spike-and-slab [59, 98]. For notational brevity, define z𝑛 := 𝑦𝑛x𝑛,
and let 𝜑(𝑠) := log(1 + exp(−𝑠)). Choosing the optimal 𝜖-coreset is not computa-
tionally feasible, so I take a less direct approach. I design a coreset construction
algorithm and prove its correctness using a quantity 𝜎𝑛(Θ) called the sensitivity [50],
which quantifies the redundancy of a particular data point 𝑛 – the larger the sen-
sitivity, the less redundant. In the setting of logistic regression, we have that the
sensitivity is

𝜎𝑛(Θ) := sup
𝜃∈Θ

𝑁 𝜑(z𝑛 · 𝜃)∑︀𝑁
ℓ=1 𝜑(𝑍ℓ · 𝜃)

.

Intuitively, 𝜎𝑛(Θ) captures how much influence data point 𝑛 has on the log-likelihood
ℒ𝒟(𝜃) when varying the parameter 𝜃 ∈ Θ, and thus data points with high sensitivity
should be included in the coreset. Evaluating 𝜎𝑛(Θ) exactly is not tractable, however,
so an upper bound 𝑚𝑛 ≥ 𝜎𝑛(Θ) must be used in its place. Thus, the key challenge is
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to efficiently compute a tight upper bound on the sensitivity.
For the moment I will consider Θ = B𝑅 for any 𝑅 > 0, where B𝑅 := {𝜃 ∈

R𝑑 | ‖𝜃‖2 ≤ 𝑅}; I discuss the case of Θ = R𝑑 shortly. Choosing the parameter space
to be a Euclidean ball is reasonable since data is usually preprocessed to have mean
zero and variance 1 (or, for sparse data, to be between -1 and 1), so each component
of 𝜃 is typically in a range close to zero (e.g. between -4 and 4) [57].

The idea behind our sensitivity upper bound construction is that we would expect
data points that are bunched together to be redundant while data points that are
far from from other data have a large effect on inferences. Clustering is an effective
way to summarize data and detect outliers, so I will use a 𝑘-clustering of the data
𝒟 to construct the sensitivity bound. A 𝑘-clustering is given by 𝑘 cluster centers
𝒬 = {𝑄1, . . . , 𝑄𝑘}. Let 𝐺𝑖 := {z𝑛 | 𝑖 = arg min𝑗 ‖𝑄𝑗 − z𝑛‖2} be the set of vectors
closest to center 𝑄𝑖 and let 𝐺(−𝑛)

𝑖 := 𝐺𝑖 ∖ {z𝑛}. Define Z
(−𝑛)
𝐺,𝑖 to be a uniform random

vector from 𝐺
(−𝑛)
𝑖 and let Z̄(−𝑛)

𝐺,𝑖 := E[Z
(−𝑛)
𝐺,𝑖 ] be its mean. The following lemma uses a

𝑘-clustering to establish an efficiently computable upper bound on 𝜎𝑛(B𝑅):
Lemma 2.2.1. For any 𝑘-clustering 𝒬,

𝜎𝑛(B𝑅) ≤ 𝑚𝑛 :=
𝑁

1 +
∑︀𝑘

𝑖=1 |𝐺
(−𝑛)
𝑖 |𝑒−𝑅‖Z̄(−𝑛)

𝐺,𝑖 −z𝑛‖2
. (2.2)

Furthermore, 𝑚𝑛 can be calculated in 𝑂(𝑘) time.

The bound in Eq. (2.2) captures the intuition that if the data forms tight clus-
ters (that is, each z𝑛 is close to one of the cluster centers), we expect each cluster
to be well-represented by a small number of typical data points. For example, if
z𝑛 ∈ 𝐺𝑖, ‖Z̄(−𝑛)

𝐺,𝑖 − z𝑛‖2 is small, and |𝐺(−𝑛)
𝑖 | = Θ(𝑁), then 𝜎𝑛(B𝑅) = 𝑂(1). I use the

(normalized) sensitivity bounds obtained from Lemma 2.2.1 to form an importance
distribution (𝑝𝑛)𝑁𝑛=1 from which to sample the coreset. I sample z𝑛, then assign it
weight 𝛾𝑛 proportional to 1/𝑝𝑛. The size of the coreset depends on the mean sensitiv-
ity bound, the desired error 𝜀, and a quantity closely related to the VC dimension of
𝜃 ↦→ 𝜑(𝜃 · Z), which I show is 𝑑+ 1. Combining these pieces we obtain Algorithm 1,
which constructs an 𝜀-coreset with high probability by Theorem 2.2.2.
Theorem 2.2.2. Fix 𝜀 > 0, 𝛿 ∈ (0, 1), and 𝑅 > 0. Consider a dataset 𝒟 with
𝑘-clustering 𝒬. With probability at least 1− 𝛿, Algorithm 1 with inputs (𝒟,𝒬, 𝑅, 𝜀, 𝛿)
constructs an 𝜀-coreset of 𝒟 for logistic regression with parameter space Θ = B𝑅.
Furthermore, Algorithm 1 runs in 𝑂(𝑁𝑘) time.

Remark 2.2.3. The coreset algorithm is efficient with an 𝑂(𝑁𝑘) running time. How-
ever, the algorithm requires a 𝑘-clustering, which must also be constructed. A high-
quality clustering can be obtained cheaply via 𝑘-means++ in 𝑂(𝑁𝑘) time [7], al-
though a coreset algorithm could also be used.

Examining Algorithm 1, we see that the coreset size 𝑀 is of order 𝑚̄𝑁 log 𝑚̄𝑁 ,
where 𝑚̄𝑁 = 1

𝑁

∑︀
𝑛𝑚𝑛. So for 𝑀 to be smaller than 𝑁 , at a minimum, 𝑚̄𝑁 should

satisfy 𝑚̄𝑁 = 𝑜(𝑁),1 and preferably 𝑚̄𝑁 = 𝑂(1). Indeed, for the coreset size to be
1Recall that the tilde notation suppresses logarithmic terms.
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small, it is critical that (a) Θ is chosen such that most of the sensitivities satisfy
𝜎𝑛(Θ)≪ 𝑁 (since 𝑁 is the maximum possible sensitivity), (b) each upper bound 𝑚𝑛

is close to 𝜎𝑛(Θ), and (c) ideally, that 𝑚̄𝑁 is bounded by a constant. In Section 2.2.2,
I address (a) by providing sensitivity lower bounds, thereby showing that the con-
straint Θ = B𝑅 is necessary for nontrivial sensitivities even for “typical” (i.e. non-
pathological) data. I then apply our lower bounds to address (b) and show that
our bound in Lemma 2.2.1 is nearly tight. In Section 2.2.3, I address (c) by estab-
lishing the expected performance of the bound in Lemma 2.2.1 for a wide class of
data-generating distributions.

2.2.2 Sensitivity Lower Bounds

I now develop lower bounds on the sensitivity to demonstrate that essentially we must
limit ourselves to bounded Θ,2 thus making our choice of Θ = B𝑅 a natural one, and
to show that the sensitivity upper bound from Lemma 2.2.1 is nearly tight.

I begin by showing that in both the worst case and the average case, for all 𝑛,
𝜎𝑛(R𝑑) = 𝑁 , the maximum possible sensitivity – even when the z𝑛 are arbitrarily
close. Intuitively, the reason for the worst-case behavior is that if there is a separating
hyperplane between a data point z𝑛 and the remaining data points, and 𝜃 is in
the direction of that hyperplane, then when ‖𝜃‖2 becomes very large, z𝑛 becomes
arbitrarily more important than any other data point.

Theorem 2.2.4. For any 𝑑 ≥ 3, 𝑁 ∈ N and 0 < 𝜖′ < 1, there exists 𝜖 > 0 and unit
vectors z1, . . . , z𝑁 ∈ R𝑑 such that for all pairs 𝑛, 𝑛′, z𝑛 · z𝑛′ ≥ 1− 𝜖′ and for all 𝑅 > 0
and 𝑛,

𝜎𝑛(B𝑅) ≥ 𝑁

1 + (𝑁 − 1)𝑒−𝑅𝜖
√
𝜖′ /4

, and hence 𝜎𝑛(R𝑑) = 𝑁.

The proof of Theorem 2.2.4 is based on choosing𝑁 distinct unit vectors v1, . . . ,v𝑁 ∈
R𝑑−1 and setting 𝜖 = 1−max𝑛̸=𝑛′ v𝑛 · v𝑛′ > 0. But what is a “typical” value for 𝜖? In
the case of the vectors being uniformly distributed on the unit sphere, we have the
following scaling for 𝜖 as 𝑁 increases:

Proposition 2.2.5. If v1, . . . ,v𝑁 are independent and uniformly distributed on the
unit sphere S𝑑 := {𝑣 ∈ R𝑑 | ‖𝑣‖ = 1} with 𝑑 ≥ 2, then with high probability

1−max
𝑛̸=𝑛′

v𝑛 · v𝑛′ ≥ 𝐶𝑑𝑁
−4/(𝑑−1),

where 𝐶𝑑 is a constant depending only on 𝑑.

Furthermore, 𝑁 can be exponential in 𝑑 even with 𝜖 remaining very close to 1:

Proposition 2.2.6. For 𝑁 = ⌊exp((1− 𝜖)2𝑑/4)/
√

2 ⌋, and v1, . . . ,v𝑁 i.i.d. such that
𝑣𝑛𝑖 = ± 1√

𝑑
with probability 1

2
, then with probability at least 1

2
, 1−max𝑛̸=𝑛′ v𝑛 ·v𝑛′ ≥ 𝜖.

2Certain pathological datasets allow us to use unbounded Θ, but I do not assume we are given
such data.
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Propositions 2.2.5 and 2.2.6 demonstrate that the data vectors z𝑛 found in The-
orem 2.2.4 are, in two different senses, “typical” vectors and should not be thought
of as worst-case data only occurring in some “negligible” or zero-measure set. These
three results thus demonstrate that it is necessary to restrict attention to bounded Θ.
One can also use Theorem 2.2.4 to show that our sensitivity upper bound is nearly
tight.

Corollary 2.2.7. For the data z1, . . . , z𝑁 from Theorem 2.2.4,

𝑁

1 + (𝑁 − 1)𝑒−𝑅𝜖
√
𝜖′ /4
≤ 𝜎𝑛(B𝑅) ≤ 𝑁

1 + (𝑁 − 1)𝑒−𝑅
√
2𝜖′
.

2.2.3 𝑘-Clustering Sensitivity Bound Performance

While Lemma 2.2.1 and Corollary 2.2.7 provide an upper bound on the sensitiv-
ity given a fixed dataset, we would also like to understand how the expected mean
sensitivity increases with 𝑁 . We might expect it to be finite since the logistic re-
gression likelihood model is parametric; the coreset would thus be acting as a sort
of approximate finite sufficient statistic. Proposition 2.2.8 characterizes the expected
performance of the upper bound from Lemma 2.2.1 under a wide class of generat-
ing distributions. This result demonstrates that, under reasonable conditions, the
expected value of 𝑚̄𝑁 is bounded for all 𝑁 . As a concrete example, Corollary 2.2.9
specializes Proposition 2.2.8 to data with a single shared Gaussian generating distri-
bution.

Proposition 2.2.8. Let x𝑛
indep∼ N(𝜇𝐿𝑛 ,Σ𝐿𝑛), where 𝐿𝑛

indep∼ Multi(𝜋1, 𝜋2, . . . ) is the
mixture component responsible for generating x𝑛. For 𝑛 = 1, . . . , 𝑁 , let 𝑦𝑛 ∈ {−1, 1}
be conditionally independent given x𝑛 and set z𝑛 = 𝑦𝑛x𝑛. Select 0 < 𝑟 < 1/2, and
define 𝜂𝑖 = max(𝜋𝑖 − 𝑁−𝑟, 0). The clustering of the data implied by (𝐿𝑛)𝑁𝑛=1 results
in the expected sensitivity bound

E[𝑚̄𝑁 ] ≤ 1

𝑁−1 +
∑︀

𝑖 𝜂𝑖𝑒
−𝑅
√

𝐴𝑖𝑁−1𝜂−1
𝑖 +𝐵𝑖

+
∑︁
𝑖:𝜂𝑖>0

𝑁𝑒−2𝑁1−2𝑟 𝑁→∞→ 1∑︀
𝑖 𝜋𝑖𝑒

−𝑅
√
𝐵𝑖
,

where

𝐴𝑖 := Tr[Σ𝑖] +
(︀
1− 𝑦2𝑖

)︀
𝜇𝑇
𝑖 𝜇𝑖,

𝐵𝑖 :=
∑︀

𝑗𝜋𝑗
(︀
Tr[Σ𝑗] + 𝑦2𝑗𝜇

𝑇
𝑖 𝜇𝑖 − 2𝑦𝑖𝑦𝑗𝜇

𝑇
𝑖 𝜇𝑗 + 𝜇𝑇

𝑗 𝜇𝑗

)︀
,

and 𝑦𝑗 = E[𝑦1|𝐿1 = 𝑗].

Corollary 2.2.9. In the setting of Proposition 2.2.8, if 𝜋1 = 1 and all data is assigned
to a single cluster, then there is a constant 𝐶 such that for sufficiently large 𝑁 ,

E[𝑚̄𝑁 ] ≤ 𝐶𝑒𝑅
√

Tr[Σ1]+(1−𝑦21)𝜇
𝑇
1 𝜇1 .
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2.2.4 Streaming and Parallel Settings

Algorithm 1 is a batch algorithm, but it can easily be used in parallel and streaming
computation settings using standard methods from the coreset literature, which are
based on the following two observations (cf. [51, Section 3.2]):

1. If 𝒟̃𝑖 is an 𝜀-coreset for 𝒟𝑖, 𝑖 = 1, 2, then 𝒟̃1 ∪ 𝒟̃2 is an 𝜀-coreset for 𝒟1 ∪ 𝒟2.

2. If 𝒟̃ is an 𝜀-coreset for 𝒟 and 𝒟̃′ is an 𝜀′-coreset for 𝒟̃, then 𝒟̃′ is an 𝜀′′-coreset
for 𝒟, where 𝜀′′ := (1 + 𝜀)(1 + 𝜀′)− 1.

We can use these observations to merge coresets that were constructed either in
parallel, or sequentially, in a binary tree. Coresets are computed for two data blocks,
merged using observation 1, then compressed further using observation 2. The next
two data blocks have coresets computed and merged/compressed in the same manner,
then the coresets from blocks 1&2 and 3&4 can be merged/compressed analogously.
We continue in this way and organize the merge/compress operations into a binary
tree. Then, if there are 𝐵 data blocks total, only log𝐵 blocks ever need be maintained
simultaneously. In the streaming setting we would choose blocks of constant size, so
𝐵 = 𝑂(𝑁), while in the parallel setting 𝐵 would be the number of machines available.

2.3 Experiments
I evaluated the performance of the logistic regression coreset algorithm on a number
of synthetic and real-world datasets. I used a maximum dataset size of 1 million
examples because I wanted to be able to calculate the true posterior, which would
be infeasible for extremely large datasets. The datasets I used are summarized in
Table 2.1.

Synthetic Data. I generated synthetic binary data according to the model
𝑋𝑛𝑖

indep∼ Bern(𝑝𝑖), 𝑖 = 1, . . . , 𝑑 and 𝑦𝑛
indep∼ 𝑝𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(· |x𝑛,𝜃). The idea is to simu-

late data in which there are a small number of rarely occurring but highly predictive
features, which is a common real-world phenomenon. I thus took

p = (1, .2, .3, .5, .01, .1, .2, .007, .005, .001) and
𝜃 = (−3, 1.2,−.5, .8, 3,−1.,−.7, 4, 3.5, 4.5)

for the 𝑑 = 10 experiments (Binary10) and the first 5 components of p and 𝜃 for the
𝑑 = 5 experiments (Binary5). The generative model is the same one used by Scott
et al. [123] and the first 5 components of p and 𝜃 correspond to those used in the Scott
et al. experiments (given in [123, Table 1b]). I generated a synthetic mixture dataset
with continuous covariates (Mixture) using a model similar to that of Han et al.
[68]: 𝑦𝑛

i.i.d.∼ Bern(1/2) and x𝑛
indep∼ N(𝜇𝑦𝑛 , 𝐼), where 𝜇−1 = (0, 0, 0, 0, 0, 1, 1, 1, 1, 1) and

𝜇1 = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0).
Real-world Data. The ChemReact dataset consists of 𝑁 = 26,733 chemicals,

each with 𝑑 = 100 properties. The goal is to predict whether each chemical is reactive.
The Webspam corpus consists of 𝑁 = 350,000 web pages, approximately 60% of
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(a) (b) Binary10 (c) Webspam

Figure 2-1: (A) Percentage of time spent creating the coreset relative to the total
inference time (including 10,000 iterations of MCMC). Except for very small coreset
sizes, coreset construction is a small fraction of the overall time. (B,C) The mean
sensitivities for varying choices of 𝑅 and 𝑘. When 𝑅 varies 𝑘 = 6 and when 𝑘 varies
𝑅 = 3. The mean sensitivity increases exponentially in 𝑅, as expected, but is robust
to the choice of 𝑘.

which are spam. The covariates consist of the 𝑑 = 127 features that each appear in
at least 25 documents. The cover type (CovType) dataset consists of 𝑁 = 581,012
cartographic observations with 𝑑 = 54 features. The task is to predict the type of
trees that are present at each observation location.

2.3.1 Scaling Properties of the Coreset Construction
Algorithm

Constructing Coresets. In order for coresets to be a worthwhile preprocessing
step, it is critical that the time required to construct the coreset is small relative
to the time needed to complete the inference procedure. I implemented the logistic
regression coreset algorithm in Python.6 More details on our implementation are
provided in Section 2.3.3. In Fig. 2-1a, I plot the relative time to construct the
coreset for each type of dataset (𝑘 = 6) versus the total inference time, including
10,000 iterations of the MCMC procedure described in Section 2.3.2. Except for very
small coreset sizes, the time to run MCMC dominates.

3dataset ds1.100 from http://komarix.org/ac/ds/.
4Available from http://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html
5dataset covtype.binary from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/binary.html.
6Code to recreate all of our experiments is available at https://bitbucket.org/jhhuggins/

lrcoresets.
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Table 2.1: datasets used for experiments

Name 𝑁 𝑑 positive examples 𝑘
Low-dimensional Synthetic Binary 1M 5 9.5% 4
Higher-dimensional Synthetic Binary 1M 10 8.9% 4
Synthetic Balanced Mixture 1M 10 50% 4
Chemical Reactivity3 26,733 100 3% 6
Webspam4 350K 127 60% 6
Cover type5 581,012 54 51% 6

Sensitivity. An important question is how the mean sensitivity 𝑚̄𝑁 scales with
𝑁 , as it determines how the size of the coreset scales with the data. Furthermore,
ensuring that mean sensitivity is robust to the number of clusters 𝑘 is critical since
needing to adjust the algorithm hyperparameters for each dataset could lead to an
unacceptable increase in computational burden. I also seek to understand how the
radius 𝑅 affects the mean sensitivity. Figs. 2-1b and 2-1c show the results of our
scaling experiments on the Binary10 and Webspam data. The mean sensitivity
is essentially constant across a range of dataset sizes. For both datasets the mean
sensitivity is robust to the choice of 𝑘 and scales exponentially in 𝑅, as I would expect
from Lemma 2.2.1.

2.3.2 Posterior Approximation Quality

Since the ultimate goal is to use coresets for Bayesian inference, the key empirical
question is how well a posterior formed using a coreset approximates the true posterior
distribution. I compared the coreset algorithm to random subsampling of data points,
since that is the approach used in many existing scalable versions of variational infer-
ence and MCMC [14, 15, 71, 81]. Indeed, coreset-based importance sampling could
be used as a drop-in replacement for the random subsampling used by these methods,
though I leave the investigation of this idea for future work.

Experimental Setup. I used adaptive Metropolis-adjusted Langevin algorithm
(MALA) [66, 118] for posterior inference. For each dataset, I ran the coreset and
random subsampling algorithms 20 times for each choice of subsample size 𝑀 . I
ran adaptive MALA for 100,000 iterations on the full dataset and each subsampled
dataset. The subsampled datasets were fixed for the entirety of each run, in contrast
to subsampling algorithms that resample the data at each iteration. For the synthetic
datasets, which are lower dimensional, I used 𝑘 = 4 while for the real-world datasets,
which are higher dimensional, I used 𝑘 = 6. I used a heuristic to choose 𝑅 as large as
was feasible while still obtaining moderate total sensitivity bounds. For a clustering
𝒬 of data 𝒟, let ℐ := 𝑁−1

∑︀𝑘
𝑖=1

∑︀
𝑍∈𝐺𝑖

‖𝑍 −𝑄𝑖‖2 be the normalized 𝑘-means score.
I chose 𝑅 = 𝑎/

√
ℐ , where 𝑎 is a small constant. The idea is that, for 𝑖 ∈ [𝑘] and

z𝑛 ∈ 𝐺𝑖, we want 𝑅‖Z̄(−𝑛)
𝐺,𝑖 − z𝑛‖2 ≈ 𝑎 on average, so the term exp{−𝑅‖Z̄(−𝑛)

𝐺,𝑖 − z𝑛‖2}
in Eq. (2.2) is not too small and hence 𝜎𝑛(B𝑅) is not too large. Our experiments used
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𝑎 = 3. I obtained similar results for 4 ≤ 𝑘 ≤ 8 and 2.5 ≤ 𝑎 ≤ 3.5, indicating that
the logistic regression coreset algorithm has some robustness to the choice of these
hyperparameters. I used negative test log-likelihood and maximum mean discrepancy
(MMD) with a 3rd degree polynomial kernel as comparison metrics (so smaller is
better).

Synthetic Data Results. Figures 2-2a-2-2c show the results for synthetic data.
In terms of test log-likelihood, coresets did as well as or outperformed random subsam-
pling. In terms of MMD, the coreset posterior approximation typically outperformed
random subsampling by 1-2 orders of magnitude and never did worse. These re-
sults suggest much can be gained by using coresets, with comparable performance to
random subsampling in the worst case.

Real-world Data Results. Figures 2-2d-2-2f show the results for real data. Us-
ing coresets led to better performance on ChemReact for small subset sizes. Because
the dataset was fairly small and random subsampling was done without replacement,
coresets were worse for larger subset sizes. Coreset and random subsampling perfor-
mance was approximately the same for Webspam. On Webspam and CovType,
coresets either outperformed or did as well as random subsampling in terms MMD
and test log-likelihood on almost all subset sizes. The only exception was that ran-
dom subsampling was superior on Webspam for the smallest subset set. I suspect
this is due to the variance introduced by the importance sampling procedure used to
generate the coreset.

For both the synthetic and real-world data, in many cases I am able to obtain a
high-quality logistic regression posterior approximation using a coreset that is many
orders of magnitude smaller than the full dataset – sometimes just a few hundred data
points. Using such a small coreset represents a substantial reduction in the memory
and computational requirements of the Bayesian inference algorithm that uses the
coreset for posterior inference. I expect that the use of coresets could lead similar
gains for other Bayesian models. Designing coreset algorithms for other widely-used
models is an exciting direction for future research.

2.3.3 Implementation Details

Implementing Algorithm 1. One time-consuming part of creating the coreset
is calculating the adjusted centers Z̄

(−𝑛)
𝐺,𝑖 . I instead used the original centers 𝑄𝑖.

Since I use small 𝑘 values and 𝑁 in large, each cluster is large. Thus, the difference
between Z̄

(−𝑛)
𝐺,𝑖 and 𝑄𝑖 was negligible in practice, resulting at most a 1% change in

the sensitivity while resulting in an order of magnitude speed-up in the algorithm.
In order to speed up the clustering step, I selected a random subset of the data of
size 𝐿 = min(1000𝑘, 0.025𝑁) and ran the sklearn implementation of 𝑘-means++ to
obtain 𝑘 cluster centers. I then calculated the clustering and the normalized 𝑘-means
score ℐ for the full dataset. Notice that 𝐿 is chosen to be independent of 𝑁 as 𝑁
becomes large but is never more than a construct fraction of the full dataset when
𝑁 is small.7 Thus, calculating a clustering only takes a small amount of time that is

7Note that I use data subsampling here only to choose the cluster centers. I still calculate
sensitivity upper bounds across the entire data set and thereby are still able to capture rare but
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comparable to the time required to run our implementation of Algorithm 1.
Posterior Inference Procedure. I used the adaptive Metropolis-adjusted Langevin

algorithm [66, 118], where I adapted the overall step size and targeted an acceptance
rate of 0.574 [116]. It 𝑇 iterations were used in total, adaptation was done for the
first 𝑇/2 iterations while the remaining iterations were used as approximate posterior
samples. For the subsampling experiments, for a subsample size 𝑀 , an approximate
dataset 𝒟̃ of size 𝑀 was obtained either using random sampling or Algorithm 1. The
dataset 𝒟̃ was then fixed for the full MCMC run.

influential data patterns. Indeed, I expect influential data points to be far from cluster centers
chosen either with or without subsampling, and I thereby expect to pick up these data points with
high probability during the coreset sampling procedure in Algorithm 1.
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(a) Binary5 (b) Binary10 (c) Mixture

(d) ChemReact (e) Webspam (f) CovType

Figure 2-2: Polynomial MMD and negative test log-likelihood of random sampling
and the logistic regression coreset algorithm for synthetic and real data with varying
subset sizes (lower is better for all plots). For the synthetic data, 𝑁 = 106 total
data points were used and 103 additional data points were generated for testing.
For the real data, 2,500 (resp. 50,000 and 29,000) data points of the ChemReact
(resp. Webspam and CovType) dataset were held out for testing. One standard
deviation error bars were obtained by repeating each experiment 20 times.
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Chapter 3

Polynomial Approximate Sufficient
Statistics

In this chapter we propose to construct approximate sufficient statistics via a very
simple polynomial approximation for generalized linear models. We therefore call
our method polynomial approximate sufficient statistics for generalized linear models
(PASS-GLM). PASS-GLM satisfies all of the criteria laid of above. It provides a
posterior approximation with theoretical guarantees. It is scalable since is requires
only a single pass over the data and can be applied to streaming and distributed data.
And by increasing the number of approximate sufficient statistics, PASS-GLM can
produce arbitrarily good approximations to the posterior.

We construct our novel polynomial approximation and specify our PASS-GLM al-
gorithm in Section 3.1. We will see that streaming and distributed computation are
trivial for our algorithm and do not compound error. In Section 3.2.1, we demon-
strate finite-sample guarantees on the quality of the MAP estimate arising from our
algorithm, with the maximum likelihood estimate (MLE) as a special case. In Sec-
tion 3.2.2, we prove guarantees on the Wasserstein distance between the exact and
approximate posteriors—and thereby bound both posterior-derived point estimates
and uncertainty estimates. In Section 3.3, we demonstrate the efficacy of our approach
in practice by focusing on logistic regression. We demonstrate experimentally that
PASS-GLM can be scaled with almost no loss of efficiency to multi-core architectures.
We show on a number of real-world datasets—including a large, high-dimensional ad-
vertising dataset (40 million examples with 20,000 dimensions)—that PASS-GLM
provides an attractive trade-off between computation and accuracy.

Related work. The Laplace approximation [136] and variational methods with
a Gaussian approximation family [74, 82] may be seen as polynomial (quadratic) ap-
proximations in the log-likelihood space. But we note that the VB variants suffer
the issues described in Chapter 1. A Laplace approximation relies on a Taylor series
expansion of the log-likelihood around the maximum a posteriori (MAP) solution,
which requires first calculating the MAP—an expensive multi-pass optimization in
the large-scale data setting. Neither Laplace nor VB offers the simplicity of sufficient
statistics, including in streaming and distributed computations. The recent work of
Stephanou et al. [131] is similar in spirit to ours, though they address a different
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Algorithm 2 PASS-GLM inference
Require: data 𝒟, GLM mapping function 𝜑 : R → R, degree 𝑀 , polynomial basis

(𝜓𝑚)𝑚∈N with base measure 𝜍
1: Calculate basis coefficients 𝑏𝑚 ←

∫︀
𝜑𝜓𝑚d𝜍 using numerical integration for 𝑚 =

0, . . . ,𝑀
2: Calculate polynomial coefficients 𝑏(𝑀)

𝑚 ←
∑︀𝑀

𝑘=𝑚 𝛼𝑘,𝑚𝑏𝑚 for 𝑚 = 0, . . . ,𝑀
3: for k ∈ N𝑑 with

∑︀
𝑗 𝑘𝑗 ≤𝑀 do

4: Initialize 𝑡k ← 0
5: end for
6: for 𝑛 = 1, . . . , 𝑁 do ◁ Can be done with any combination of batch, parallel, or

streaming
7: for k ∈ N𝑑 with

∑︀
𝑗 𝑘𝑗 ≤𝑀 do

8: Update 𝑡k ← 𝑡k + (𝑦𝑛x𝑛)k

9: end for
10: end for
11: Form approximate log-likelihood ℒ̃𝒟(𝜃) =

∑︀
k∈N𝑑:

∑︀
𝑗 𝑘𝑗≤𝑚

(︀
𝑚
k

)︀
𝑏
(𝑀)
𝑚 𝑡k𝜃

k

12: Use ℒ̃𝒟(𝜃) to construct approximate posterior 𝜋̃𝒟(𝜃)

statistical problem: they construct sequential quantile estimates using Hermite poly-
nomials. PASS-GLM has certain advantages over the coreset approach of the previous
chapter. While coresets provide theoretical guarantees on the quality of inference via
the model evidence, the resulting guarantees are better suited to approximate op-
timization and do not translate to guarantees on typical Bayesian desiderata, such
as the accuracy of posterior mean and uncertainty estimates. Moreover, while core-
sets do admit streaming and distributed constructions, the approximation error is
compounded across computations.

3.1 PASS-GLM

Recall from Section 1.2 that the log-likelihood in a GLM is given by

log 𝑝(𝑦𝑛 | 𝑔−1(x𝑛 · 𝜃)) = 𝜑(𝑦𝑛,x𝑛 · 𝜃),

where 𝜑(𝑦, 𝑠) is called the mapping function. Since exact sufficient statistics are not
available for GLMs, we propose to construct approximate sufficient statistics by ap-
proximating 𝜑 with an order-𝑀 polynomial 𝜑𝑀 . We first illustrate our method in the
logistic regression case, where log 𝑝(𝑦𝑛 |x𝑛,𝜃) = 𝜑logit(𝑦𝑛x𝑛 · 𝜃). Let 𝑏(𝑀)

0 , 𝑏
(𝑀)
1 . . . , 𝑏

(𝑀)
𝑀

be constants such that

𝜑logit(𝑠) ≈ 𝜑𝑀(𝑠) :=
∑︀𝑀

𝑚=0 𝑏
(𝑀)
𝑚 𝑠𝑚.
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Let vk :=
∏︀𝑑

𝑗=1 𝑣
𝑘𝑗
𝑗 for vectors v,k ∈ R𝑑. Taking 𝑠 = 𝑦x · 𝜃, we obtain

𝜑logit(𝑦x · 𝜃) ≈ 𝜑𝑀(𝑦x · 𝜃) =
∑︀𝑀

𝑚=0 𝑏
(𝑀)
𝑚 (𝑦x · 𝜃)𝑚 =

∑︀𝑀
𝑚=0 𝑏

(𝑀)
𝑚

∑︀
k∈N𝑑∑︀
𝑗 𝑘𝑗=𝑚

(︀
𝑚
k

)︀
(𝑦x)k𝜃k

=
∑︀𝑀

𝑚=0

∑︀
k∈N𝑑:

∑︀
𝑗 𝑘𝑗=𝑚 𝑎(k,𝑚,𝑀)(𝑦x)k𝜃k,

where
(︀
𝑚
k

)︀
is the multinomial coefficient and 𝑎(k,𝑚,𝑀) :=

(︀
𝑚
k

)︀
𝑏
(𝑀)
𝑚 . Thus, 𝜑𝑀 is an

𝑀 -degree polynomial approximation to 𝜑logit(𝑦x · 𝜃) with the
(︀
𝑑+𝑀
𝑑

)︀
monomials of

degree at most 𝑀 serving as sufficient statistics derived from 𝑦x. Specifically, we
have a exponential family model with

t(𝑦x) = ([𝑦x]k)k and 𝜂(𝜃) = (𝑎(k,𝑚,𝑀)𝜃k)k,

where k is taken over all k ∈ N𝑑 such that
∑︀

𝑗 𝑘𝑗 ≤𝑀 . We next discuss the calculation
of the 𝑏(𝑀)

𝑚 and the choice of 𝑀 .

We can generalize the setup just described to cover a wide range of GLMs by
assuming the log-likelihood is of the form

log 𝑝(𝑦 |x,𝜃) =
𝐾∑︁
𝑘=1

𝑦𝛼𝑘𝜑(𝑘)(𝑦
𝛽𝑘x · 𝜃 − 𝑎𝑘𝑦),

where typically 𝛼𝑘, 𝛽𝑘, 𝑎𝑘 ∈ {0, 1}. We consider the 𝐾 = 1 case and drop the 𝑘
subscripts since the extension to 𝐾 > 1 is trivial and serves only to introduce ex-
tra notational clutter. Letting 𝜑𝑀(𝑠) =

∑︀𝑀
𝑚=0 𝑏

(𝑀)
𝑚 𝑠𝑚 be the order 𝑀 polynomial

approximation to 𝜑(𝑠) = 𝜑(1)(𝑠), we have that

log 𝑝(𝑦 |x,𝜃) ≈ 𝑦𝛼𝜑𝑀(𝑦𝛽x · 𝜃 − 𝑎𝑦)

= 𝑦𝛼
𝑀∑︁

𝑚=0

𝑏(𝑀)
𝑚 (𝑦𝛽x · 𝜃 − 𝑎𝑦)𝑚

= 𝑦𝛼
𝑀∑︁

𝑚=0

𝑏(𝑀)
𝑚

𝑚∑︁
𝑖=0

(︂
𝑚

𝑖

)︂
(𝑦𝛽x · 𝜃)𝑖(𝑎𝑦)𝑚−𝑖

=
𝑀∑︁
𝑖=0

(𝑦𝛽x · 𝜃)𝑖𝑦𝛼
𝑀∑︁

𝑚=𝑖

𝑏(𝑀)
𝑚

(︂
𝑚

𝑖

)︂
(𝑎𝑦)𝑚−𝑖

=
𝑀∑︁
𝑖=0

∑︁
k∈N𝑑∑︀
𝑗 𝑘𝑗=𝑖

𝑎′(k, 𝑖,𝑀, 𝑦)(𝑦𝛽x)k𝜃k,

where 𝑎′(k, 𝑘,𝑀, 𝑦) := 𝑦𝛼
(︀
𝑘
k

)︀∑︀𝑀
𝑚=𝑖 𝑏

(𝑀)
𝑚

(︀
𝑚
𝑘

)︀
(𝑎𝑦)𝑚−𝑘. Thus, we have an exponential

family model with

t(x, 𝑦) =
(︁
𝑎′
(︁
k,
∑︀

𝑗𝑘𝑗,𝑀, 𝑦
)︁
xk
)︁
k

and 𝜂(𝜃) = (𝜃k)k,
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where k is taken over all k ∈ N𝑑 such that
∑︀

𝑗 𝑘𝑗 ≤𝑀 .
The following examples show how a variety of GLM models fit into our framework.

Throughout, let 𝑠 = x𝑛 · 𝜃.

Example 3.1.1 (Robust regression). For robust regression, the log-likelihood is in
the form 𝛿(𝑠 − 𝑦), where 𝛿 is a choice of “distance” function. So we have 𝜑(1) = 𝛿,
𝑎1 = 1, 𝛼1 = 𝛽1 = 0.

Example 3.1.2 (Poisson regression). For Poisson regression the log-likelihood is
𝑦𝑠− 𝑒𝑠, so 𝜑(1)(𝑠) = 𝑠, 𝜑(2)(𝑠) = −𝑒𝑠, 𝛼1 = 1, and 𝛽1 = 𝑎1 = 𝛼2 = 𝛽2 = 𝑎2 = 0.

Example 3.1.3 (Gamma regression). For gamma regression, the log-likelihood is
−𝜈𝑠−𝜈𝑦𝑒−𝑠+𝑐(𝑦, 𝜈) if using the log link, where 𝜈 is a scale parameter. We can ignore
the 𝑐(𝑦, 𝜈) term since it does not depend on 𝜃. Thus, 𝜑(1)(𝑠) = −𝜈𝑠, 𝜑(2)(𝑠) = −𝜈𝑒−𝑠,
𝛼2 = 1, and 𝛽1 = 𝑎1 = 𝛼1 = 𝛽2 = 𝑎2 = 0.

Example 3.1.4 (Probit regression). For probit regression, 𝒴 = {0, 1}, and the log-
likelihood is {︃

ln(1− Φ(𝑠)) 𝑦 = 0

ln(Φ(𝑠)) 𝑦 = 1
,

where Φ denotes the standard normal CDF. Thus, 𝜑(1)(𝑠) = ln(1 − Φ(𝑠)), 𝜑(2)(𝑠) =
ln(Φ(𝑠))− ln(1− Φ(𝑠)), 𝛼2 = 1, and 𝛽1 = 𝑎1 = 𝛼1 = 𝛽2 = 𝑎2 = 0.

Choosing the polynomial approximation. To calculate the coefficients 𝑏(𝑀)
𝑚 ,

we choose a polynomial basis (𝜓𝑚)𝑚∈N orthogonal with respect to a base measure 𝜍,
where 𝜓𝑚 is degree 𝑚 [133]. That is,

𝜓𝑚(𝑠) =
∑︀𝑚

𝑗=0 𝛼𝑚,𝑗𝑠
𝑗

for some 𝛼𝑚,𝑗, and ∫︀
𝜓𝑚𝜓𝑚′d𝜍 = 𝛿𝑚𝑚′ ,

where 𝛿𝑚𝑚′ = 1 if 𝑚 = 𝑚′ and zero otherwise. If 𝑏𝑚 :=
∫︀
𝜑𝜓𝑚d𝜍, then

𝜑(𝑠) =
∑︀∞

𝑚=0 𝑏𝑚𝜓𝑚(𝑠)

and the approximation 𝜑𝑀(𝑠) =
∑︀𝑀

𝑚=0 𝑏𝑚𝜓𝑚(𝑠). Conclude that 𝑏(𝑀)
𝑚 =

∑︀𝑀
𝑘=𝑚 𝛼𝑘,𝑚𝑏𝑚.

The complete PASS-GLM framework appears in Algorithm 2.
Choices for the orthogonal polynomial basis include Chebyshev, Hermite, Leguerre,

and Legendre polynomials [133]. We choose Chebyshev polynomials since they pro-
vide a uniform quality guarantee on a finite interval, e.g. [−𝑅,𝑅] for some 𝑅 > 0 in
what follows. If 𝜑 is smooth, the choice of Chebyshev polynomials (scaled appropri-
ately, along with the base measure 𝜍, based on the choice of 𝑅) yields error exponen-
tially small in 𝑀 : sup𝑠∈[−𝑅,𝑅] |𝜑(𝑠)− 𝜑𝑀(𝑠)| ≤ 𝐶𝜌𝑀 for some 0 < 𝜌 < 1 and 𝐶 > 0
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[93]. We show in Appendix B.1 that the error in the approximate derivative 𝜑′
𝑀 is

also exponentially small in 𝑀 : sup𝑠∈[−𝑅,𝑅] |𝜑′(𝑠)− 𝜑′
𝑀(𝑠)| ≤ 𝐶 ′𝜌𝑀 , where 𝐶 ′ > 𝐶.

Choosing the polynomial degree. For fixed 𝑑, the number of monomials is
𝑂(𝑀𝑑) while for fixed 𝑀 the number of monomials is 𝑂(𝑑𝑀). The number of ap-
proximate sufficient statistics can remain manageable when either 𝑀 or 𝑑 is small
but becomes unwieldy if 𝑀 and 𝑑 are both large. Since our experiments (Section 3.3)
generally have large 𝑑, we focus on the small 𝑀 case here.

In our experiments we further focus on the choice of logistic regression as a par-
ticularly popular GLM example with 𝑝(𝑦𝑛 |x𝑛,𝜃) = 𝜑logit(𝑦𝑛x𝑛 · 𝜃), where

𝜑logit(𝑠) := − log(1 + 𝑒−𝑠).

In general, the smallest and therefore most compelling choice of 𝑀 a priori is 2,
and we demonstrate the reasonableness of this choice empirically in Section 3.3 for a
number of large-scale data analyses. In addition, in the logistic regression case, 𝑀 = 6
is the next usable choice beyond𝑀 = 2. This is because 𝑏(𝑀)

2𝑘+1 = 0 for all integer 𝑘 ≥ 1
with 2𝑘 + 1 ≤𝑀 . So any approximation beyond 𝑀 = 2 must have 𝑀 ≥ 4. Also,
𝑏
(𝑀)
4𝑘 > 0 for all integers 𝑘 ≥ 1 with 4𝑘 ≤𝑀 . So choosing 𝑀 = 4𝑘, 𝑘 ≥ 1, leads to a

pathological approximation of 𝜑logit where the log-likelihood can be made arbitrarily
large by taking ‖𝜃‖2 →∞. Thus, a reasonable polynomial approximation for logistic
regression requires 𝑀 = 2 + 4𝑘, 𝑘 ≥ 0. We have discussed the relative drawbacks of
other popular quadratic approximations, including the Laplace approximation and
variational methods, at the beginning of the chapter.

3.2 Theoretical Results

We next establish quality guarantees for PASS-GLM. We first provide finite-sample
and asymptotic guarantees on the MAP (point estimate) solution, and therefore on
the MLE, in Section 3.2.1. We then provide guarantees on the Wasserstein distance
between the approximate and exact posteriors, and show these bounds translate into
bounds on the quality of posterior mean and uncertainty estimates, in Section 3.2.2.
See Appendix B.2 for extended results, further discussion, and all proofs.

3.2.1 MAP approximation

In Appendix B.2, we state and prove Theorem B.2.1, which provides guarantees on
the quality of the MAP estimate for an arbitrary approximation ℒ̃𝒟(𝜃) to the log-
likelihood ℒ𝒟(𝜃). The approximate MAP (i.e., the MAP under ℒ̃𝒟) is (cf. Eq. (1.1))

𝜃MAP := arg max
𝜃∈Θ

log 𝜋0(𝜃) + ℒ̃𝒟(𝜃).

Roughly, we find in Theorem B.2.1 that the error in the MAP estimate naturally
depends on the error of the approximate log-likelihood as well as the peakedness of
the posterior near the MAP. In the latter case, if log 𝜋𝒟 is very flat, then even a small
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error from using ℒ̃𝒟 in place of ℒ𝒟 could lead to a large error in the approximate
MAP solution. We measure the peakedness of the distribution in terms of the strong
convexity constant1 of − log 𝜋𝒟 near 𝜃MAP.

We apply Theorem B.2.1 to PASS-GLM for logistic regression and robust regres-
sion. We require the assumption that

𝜑𝑀(𝑡) ≤ 𝜑(𝑡) ∀𝑡 /∈ [−𝑅,𝑅], (3.1)

which in the cases of logistic regression and smoothed Huber regression, we conjecture
holds for 𝑀 = 2 + 4𝑘, 𝑘 ∈ N. For a matrix A, ‖A‖2 denotes its spectral norm.

Corollary 3.2.1. For the logistic regression model, assume that

‖(∇2ℒ𝒟(𝜃MAP))−1‖2 ≤ 𝑐𝑑/𝑁

for some constant 𝑐 > 0 and that ‖x𝑛‖2 ≤ 1 for all 𝑛 = 1, . . . , 𝑁 . Let 𝜑𝑀 be the order-
𝑀 Chebyshev approximation to 𝜑logit on [−𝑅,𝑅] such that Eq. (3.1) holds. Let 𝜋̃𝒟(𝜃)
denote the posterior approximation obtained by using 𝜑𝑀 with a log-concave prior.
Then there exist numbers 𝑟 = 𝑟(𝑅) > 1, 𝜀 = 𝜀(𝑀) = 𝑂(𝑟−𝑀), and 𝛼* ≥ 27

𝜀𝑑3𝑐3+54
,

such that if 𝑅− ‖𝜃MAP‖2 ≥ 2
√︁

𝑐𝑑𝜀
𝛼* , then

‖𝜃MAP − 𝜃MAP‖22 ≤
4𝑐𝑑𝜀

𝛼* ≤
4

27
𝑐4𝑑4𝜀2 + 8𝑐𝑑𝜀.

The main takeaways from Corollary 3.2.1 are that (1) the error decreases expo-
nentially in 𝑀 thanks to the 𝜀 term, (2) the error does not depend on the amount of
data, and (3) in order for the bound on the approximate MAP solution to hold, the
norm of the true MAP solution must be sufficiently smaller than 𝑅.

Remark 3.2.2. Some intuition for the assumption on the Hessian of ℒ𝒟, i.e.,∇2ℒ𝒟(𝜃) =∑︀𝑁
𝑛=1 𝜑

′′
logit(𝑦𝑛x𝑛 · 𝜃)x𝑛x

⊤
𝑛 , is as follows. Typically for 𝜃 near 𝜃MAP, the minimum

eigenvalue of ∇2ℒ𝒟(𝜃) is at least 𝑁/(𝑐𝑑) for some 𝑐 > 0. The minimum eigenvalue
condition in Corollary 3.2.1 holds if, for example, a constant fraction of the data
satisfies 0 < 𝑏 ≤ ‖𝑥𝑛‖2 ≤ 𝐵 <∞ and that subset of the data does not lie too close
to any (𝑑 − 1)-dimensional hyperplane. This condition essentially requires the data
not to be degenerate and is similar to ones used to show asymptotic consistency of
logistic regression [137, Ex. 5.40].

The approximate MAP error bound in the robust regression case using, for exam-
ple, the smoothed Huber loss (Example 3.1.1), is quite similar to the logistic regression
result.

Corollary 3.2.3. For robust regression with smoothed Huber loss, assume that a
constant fraction of the data satisfies |x𝑛 · 𝜃MAP − 𝑦𝑛| ≤ 𝑏/2 and that ‖x𝑛‖2 ≤ 1
for all 𝑛 = 1, . . . , 𝑁 . Let 𝜑𝑀 be the order 𝑀 Chebyshev approximation to 𝜑Huber

1Recall that a twice-differentiable function 𝑓 : R𝑑 → R is 𝜚-strongly convex at 𝜃 if the minimum
eigenvalue of the Hessian of 𝑓 evaluated at 𝜃 is at least 𝜚 > 0.
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on [−𝑅,𝑅] such that Eq. (3.1) holds. Let 𝜋̃𝒟(𝜃) denote the posterior approximation
obtained by using 𝜑𝑀 with a log-concave prior. Then if 𝑅 ≫ ‖𝜃MAP‖2, there exists
𝑟 > 1 such that for 𝑀 sufficiently large, ‖𝜃MAP − 𝜃MAP‖22 = 𝑂(𝑑𝑟−𝑀).

3.2.2 Posterior approximation

We next establish guarantees on how close the approximate and exact posteriors are
in Wasserstein distance, 𝑑𝒲 . For distributions 𝑃 and 𝑄 on R𝑑,

𝑑𝒲(𝑃,𝑄) := sup
𝑓 :‖𝑓‖𝐿≤1

⃒⃒⃒⃒∫︁
𝑓d𝑃 −

∫︁
𝑓d𝑄

⃒⃒⃒⃒
,

where ‖𝑓‖𝐿 denotes the Lipschitz constant of 𝑓 .2 This choice of distance is partic-
ularly useful since, if 𝑑𝒲(𝜋𝒟, 𝜋̃𝒟) ≤ 𝛿, then 𝜋̃𝒟 can be used to estimate any func-
tion with bounded gradient with error at most 𝛿 supw ‖∇𝑓(w)‖2. Wasserstein error
bounds therefore give bounds on the mean estimates (corresponding to 𝑓(𝜃) = 𝜃𝑖)
as well as uncertainty estimates such as mean absolute deviation (corresponding
to 𝑓(𝜃) = |𝜃𝑖 − 𝜃𝑖|, where 𝜃𝑖 is the expected value of 𝜃𝑖).

Our general result (Theorem B.2.3) is stated and proved in Appendix B.2. Similar
to Theorem B.2.1, the result primarily depends on the peakedness of the approximate
posterior and the error of the approximate gradients. If the gradients are poorly
approximated then the error can be large while if the (approximate) posterior is flat
then even small gradient errors could lead to large shifts in expected values of the
parameters and hence large Wasserstein error.

We apply Theorem B.2.3 to PASS-GLM for logistic regression and Poisson regres-
sion. We give simplified versions of these corollaries in the main text and defer the
more detailed versions to Appendix B.2. For logistic regression we assume 𝑀 = 2 and
Θ = R𝑑 since this is the setting we use for our experiments. The result is similar in
spirit to Corollary 3.2.1, though more straightforward since 𝑀 = 2. Critically, we see
in this result how having small error depends on |𝑦𝑛x𝑛 ·𝜃| ≤ 𝑅 with high probability.
Otherwise the second term in the bound will be large.

Corollary 3.2.4. Let 𝜑2 be the second-order Chebyshev approximation to 𝜑logit on
[−𝑅,𝑅] and let 𝜋̃𝒟(𝜃) = N(𝜃 |𝜃MAP, Σ̃) denote the posterior approximation obtained
by using 𝜑2 with a Gaussian prior 𝜋0(𝜃) = N(𝜃 |𝜃0,Σ0). Let 𝜃 :=

∫︀
𝜃𝜋𝒟(d𝜃), let

𝛿1 := 𝑁−1
∑︀𝑁

𝑛=1⟨𝑦𝑛x𝑛,𝜃⟩, and let 𝜎1 be the subgaussianity constant of the random
variable ⟨𝑦𝑛x𝑛,𝜃⟩ − 𝛿1, where 𝑛 ∼ Unif{1, . . . , 𝑁}. Assume that |𝛿1| ≤ 𝑅, that ‖Σ̃‖2 ≤
𝑐𝑑/𝑁 , and that ‖x𝑛‖2 ≤ 1 for all 𝑛 = 1, . . . , 𝑁 . Then with 𝜎2

0 := ‖Σ0‖2, we have

𝑑𝒲(𝜋𝒟, 𝜋̃𝒟) = 𝑂
(︁
𝑑𝑅4 + 𝑑𝜎0 exp

(︁
𝜎2
1𝜎

−2
0 −

√
2 𝜎−1

0 (𝑅− |𝛿1|)
)︁)︁

.

The main takeaway from Corollary 3.2.4 is that if (a) for most 𝑛, |⟨x𝑛,𝜃⟩| <
𝑅, so that 𝜑2 is a good approximation to 𝜑logit, and (b) the approximate posterior

2The Lipschitz constant of function 𝑓 : R𝑑 → R is ‖𝑓‖𝐿 := supv,w∈R𝑑
‖𝜑(v)−𝜑(w)‖2

‖v−w‖2
.
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Figure 3-1: Validating the use of PASS-GLM with 𝑀 = 2. (a) The second-order
Chebyshev approximation to 𝜑 = 𝜑logit on [−4, 4] is very accurate, with error of at
most 0.069. (b) For a variety of datasets, the inner products ⟨𝑦𝑛x𝑛,𝜃MAP⟩ are mostly
in the range of [−4, 4].

concentrates quickly, then we get a high-quality approximate posterior. This result
matches up with the experimental results (see Section 3.3 for further discussion).

For Poisson regression, we return to the case of general 𝑀 . Recall that in the
Poisson regression model that the expectation of 𝑦𝑛 is 𝜇 = 𝑒x𝑛·𝜃. If 𝑦𝑛 is bounded
and has non-trivial probability of being greater than zero, we lose little by restricting
x𝑛 ·𝜃 to be bounded. Thus, we will assume that the parameter space is bounded. As
in Corollaries 3.2.1 and 3.2.3, the error is exponentially small in 𝑀 and, as long as
‖
∑︀𝑁

𝑛=1 x𝑛x
⊤
𝑛 ‖2 grows linearly in 𝑁 , does not depend on the amount of data.

Corollary 3.2.5. Let 𝑓𝑀(𝑠) be the order-𝑀 Chebyshev approximation to 𝑒𝑡 on the
interval [−𝑅,𝑅], and let 𝜋̃𝒟(𝜃) denote the posterior approximation obtained by us-
ing the approximation log 𝑝(𝑦𝑛 |x𝑛,𝜃) := 𝑦𝑛x𝑛 · 𝜃 − 𝑓𝑀(x𝑛 · 𝜃)− log 𝑦𝑛! with a log-
concave prior on Θ = B𝑅(0). If inf𝑠∈[−𝑅,𝑅] 𝑓

′′
𝑀(𝑠) ≥ 𝜚 > 0, ‖

∑︀𝑁
𝑛=1 x𝑛x

⊤
𝑛 ‖2 = Ω(𝑁/𝑑),

and ‖x𝑛‖2 ≤ 1 for all 𝑛 = 1, . . . , 𝑁 , then

𝑑𝒲(𝜋𝒟, 𝜋̃𝒟) = 𝑂
(︀
𝑑𝜚−1𝑀2𝑒𝑅2−𝑀

)︀
.

Note that although 𝜚−1 does depend on 𝑅 and 𝑀 , as 𝑀 becomes large it converges
to 𝑒𝑅. Observe that if we truncate a prior on R𝑑 to be on B𝑅(0), by making 𝑅 and 𝑀
sufficiently large, the Wasserstein distance between 𝜋𝒟 and the PASS-GLM posterior
approximation 𝜋̃𝒟 can be made arbitarily small. Similar results could be shown for
other GLM likelihoods.
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Figure 3-2: Batch inference results. In all metrics smaller is better.

3.3 Experiments

In our experiments, we focus on logistic regression, a particularly popular GLM exam-
ple.3 As discussed in Section 3.1, we choose 𝑀 = 2 and call our algorithm PASS-LR2.
Empirically, we observe that 𝑀 = 2 offers a high-quality approximation of 𝜑 on the
interval [−4, 4] (Fig. 3-1a). In fact sup𝑠∈[−4,4] |𝜑2(𝑠)− 𝜑(𝑠)| < 0.069. Moreover, we
observe that for many datasets, the inner products 𝑦𝑛x𝑛 · 𝜃MAP tend to be concen-
trated within [−4, 4], and therefore a high-quality approximation on this range is
sufficient for our analysis. In particular, Fig. 3-1b shows histograms of 𝑦𝑛x𝑛 · 𝜃MAP

for four datasets from our experiments. In all but one case, over 98% of the data
points satisfy |𝑦𝑛x𝑛 · 𝜃MAP| ≤ 4. In the remaining dataset (CodRNA), only ∼80% of
the data satisfy this condition, and this is the dataset for which PASS-LR2 performed
most poorly (cf. Corollary 3.2.4).

3.3.1 Large dataset experiments

In order to compare PASS-LR2 to other approximate Bayesian methods, we first re-
strict our attention to datasets with fewer than 1 million data points. We compare
to the Laplace approximation and the adaptive Metropolis-adjusted Langevin algo-
rithm (MALA). We also compare to stochastic gradient descent (SGD) although SGD
provides only a point estimate and no approximate posterior. In all experiments, no
method performs as well as PASS-LR2 given the same (or less) running time.

Datasets. The ChemReact dataset consists of 𝑁 = 26,733 chemicals, each with
𝑑 = 100 properties. The goal is to predict whether each chemical is reactive. The

3Code is available at https://bitbucket.org/jhhuggins/pass-glm.
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Webspam corpus consists of 𝑁 = 350,000 web pages and the covariates consist of
the 𝑑 = 127 features that each appear in at least 25 documents. The cover type
(CovType) dataset consists of 𝑁 = 581,012 cartographic observations with 𝑑 = 54
features. The task is to predict the type of trees that are present at each observation
location. The CodRNA dataset consists of 𝑁 = 488,565 and 𝑑 = 8 RNA-related
features. The task is to predict whether the sequences are non-coding RNA.

Fig. 3-2 shows average errors of the posterior mean and variance estimates as
well as negative test log-likelihood for each method versus the time required to run
the method. SGD was run for between 1 and 20 epochs. The true posterior was
estimated by running three chains of adaptive MALA for 50,000 iterations, which
produced Gelman-Rubin statistics well below 1.1 for all datasets.

Speed. For all four datasets, PASS-LR2 was an order of magnitude faster than
SGD and 2–3 orders of magnitude faster than the Laplace approximation.

Mean and variance estimates. For ChemReact, Webspam, and CovType,
PASS-LR2 was superior to or competitive with SGD, with MALA taking 10–100x
longer to produce comparable results. Laplace again outperformed all other methods.
Critically, on all datasets the PASS-LR2 variance estimates were competitive with
Laplace and MALA.

Test log-likelihood. For ChemReact and Webspam, PASS-LR2 produced
results competitive with all other methods. MALA took 10–100x longer to produce
comparable results. For CovType, PASS-LR2 was competitive with SGD but took
a tenth of the time, and MALA took 1000x longer for comparable results. Laplace
outperformed all other methods, but was orders of magnitude slower than PASS-LR2.
CodRNA was the only dataset where PASS-LR2 performed poorly. However, this
performance was expected based on the 𝑦𝑛x𝑛 · 𝜃MAP histogram (Fig. 3-1a).

3.3.2 Very large dataset experiments using streaming and
distributed PASS-GLM

We next test PASS-LR2, which is streaming without requiring any modifications,
on a subset of 40 million data points from the Criteo terabyte ad click prediction
dataset (Criteo). The covariates are 13 integer-valued features and 26 categorical
features. After one-hot encoding, on the subset of the data we considered, 𝑑 ≈ 3
million. For tractability we used sparse random projections [83] to reduce the dimen-
sionality to 20,000. At this scale, comparing to the other fully Bayesian methods from
Section 3.3.1 was infeasible; we compare only to the predictions and point estimates
from SGD. PASS-LR2 performs slightly worse than SGD in AUC (Fig. 3-3a), but
outperforms SGD in negative test log-likelihood (0.07 for SGD, 0.045 for PASS-LR2).
Since PASS-LR2 estimates a full covariance, it was about 10x slower than SGD. A
promising approach to speeding up and reducing memory usage of PASS-LR2 would
be to use a low-rank approximation to the second-order moments.

To validate the efficiency of distributed computation with PASS-LR2, we compared
running times on 6M examples with dimensionality reduced to 1,000 when using 1–22
cores. As shown in Fig. 3-3b, the speed-up is close to optimal: 𝐾 cores produces a
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Figure 3-3: (a) ROC curves for streaming inference on 40 million Criteo data points.
SGD and PASS-LR2 had negative test log-likelihoods of, respectively, 0.07 and 0.045.
(b) Cores vs. speedup (compared to one core) for parallelization experiment on 6
million examples from the Criteo dataset.

speedup of about 𝐾/2 (baseline 3 minutes using 1 core). We used Ray to implement
the distributed version of PASS-LR2 [104].4

3.4 Discussion
We have presented PASS-GLM, a novel framework for scalable parameter estimation
and Bayesian inference in generalized linear models. Our theoretical results provide
guarantees on the quality of point estimates as well as approximate posteriors derived
from PASS-GLM. We validated our approach empirically with logistic regression and
a quadratic approximation. We showed competitive performance on a variety of
real-world data, scaling to 40 million examples with 20,000 covariates, and trivial
distributed computation with no compounding of approximation error.

There a number of important directions for future work. The first is to use ran-
domization methods along the lines of random projections and random feature map-
pings [83, 114] to scale to larger𝑀 and 𝑑. We conjecture that the use of randomization
will allow experimentation with other GLMs for which quadratic approximations are
insufficient.

4https://github.com/ray-project/ray
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Chapter 4

Approximate Diffusions

So far we have examined a number of approaches to replacing an exact log-likelihood
ℒ𝒟 that requires Ω(𝑁) time to evaluate with an approximation ℒ̃𝒟 that requires
𝑜(𝑁) time to evaluate. As we have seen, this is a practical and general-purpose
approach to scaling Bayesian inference to very large datasets. In this chapter we
step back to develop some general-purpose theoretical tools for evaluating the quality
of an approximate posterior 𝜋̃𝒟 derived from a likelihood approximation ℒ̃𝒟. These
results are used Appendix B to prove the accuracy guarantees of the PASS-GLM
methodology developed in Chapter 3. We provide further applications of our results
below as well.

We tackle the question of how close 𝜋̃𝒟 is to the true target distribution 𝜋𝒟 from
the perspective of Markov chains and their continuous-time counterpart, diffusion
processes — these stochastic processes are ubiquitous in machine learning and statis-
tics, forming a core component of the inference and modeling toolkit. Since faster
convergence enables more efficient sampling and inference, a large and fruitful litera-
ture has investigated how quickly these stochastic processes converge to equilibrium.
The large-data setting, however, leads us to develop stochastic processes that can be
simulated from efficiently — by replacing ℒ𝒟 with ℒ̃𝒟 — while remaining accurate
(as measured by fast convergence to the target distribution). Consider an MCMC
algorithm that employs ℒ̃𝒟. A central question of both theoretical and practical
importance is how to quantify the deviation between the equilibrium distribution
that the approximate chain converges to and the desired distribution targeted by the
original chain. Moreover, we would like to understand, given a fixed computational
budget, how to design approximate chains that generate the most accurate samples.

Our contributions. In this chaper, we develop general results to quantify the
accuracy of approximate diffusions and Markov chains and apply these results to
characterize the computational–statistical trade-off in specific algorithms. Our start-
ing point is continuous-time diffusion processes because these are the objects which
are discretized to construct many sampling algorithms, such as the unadjusted and
Metropolis-adjusted Langevin algorithms [118] and Hamiltonian Monte Carlo [103].
Given two diffusion processes, we bound the deviation in their equilibrium distribu-
tions in terms of the deviation in their drifts and the rate at which the diffusion mixes
(Theorem 4.2.1). Moreover, we show that this bound is tight for certain Gaussian
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target distributions. These characterizations of diffusions are novel and are likely of
more general interest beyond the inferential settings we consider. We apply our gen-
eral results to derive a finite-sample error bound on a specific unadjusted Langevin
dynamics algorithm (Theorem 4.4.1). Under computational constraint, the relevant
trade-off here is between computing the exact log-likelihood gradient for few iterations
or computing an approximate gradient for more iterations. We characterize settings
where the approximate Langevin dynamics produce more accurate samples from the
true posterior. We illustrate our analyses with simulation results. In addition, we
apply our approach to quantify the accuracy of approximations to the zig-zag process,
a recently-developed non-reversible sampling scheme.

Chapter outline. We introduce the basics of diffusion processes and other pre-
liminaries in Section 4.1. Section 4.2 discusses the main results on bounding the error
between an exact and perturbed diffusion. We describe the main ideas behind our
analyses in Section 4.3; all the detailed proofs are deferred to the Appendix C. Sec-
tion 4.4 applies the main results to derive finite sample error bounds for unadjusted
Langevin dynamics and illustrates the computational–statistical trade-off. Section 4.5
extends our main results to quantify the accuracy of approximate piecewise deter-
ministic Markov processes, including the zig-zag process. Numerical experiments to
complement the theory are provided in Section 5.5. We conclude with a discussion of
how our results connect to the relevant literature and suggest directions for further
research.

4.1 Diffusions and preliminaries

In this chapter we adopt different notation than the other chapters to follow the
standard notation used in the stochastic processes literature. Let 𝒳 = R𝑑 be the
parameter space and let 𝜋 be a probability density over R𝑑 (e.g. it can be the pos-
terior distribution of some latent parameters given data). A Langevin diffusion is
characterized by the stochastic differential equation

d𝑋𝑡 = ∇ log 𝜋(𝑋𝑡) d𝑡+
√

2 d𝑊𝑡,

where 𝑋𝑡 ∈ R𝑑 and 𝑊𝑡 is a standard Brownian motion. The intuition is that 𝑋𝑡

undergoes a biased random walk in which it is more likely to move in directions
that increase the density. Under appropriate regularity conditions, as 𝑡 → ∞, the
distribution of 𝑋𝑡 converges to 𝜋. Thus, simulating the Langevin diffusion provides
a powerful framework to sample from the target 𝜋. To implement such a simulation,
we need to discretize the continuous diffusion into finite-width time steps. For our
main results, we focus on analyzing properties of the underlying diffusion processes.
This allows us to obtain general results which are independent of any particular
discretization scheme.

Beyond Langevin dynamics, more general diffusions can take the form

d𝑋𝑡 = 𝑏(𝑋𝑡) d𝑡+
√

2 d𝑊𝑡, (4.1)
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where 𝑏 : R𝑑 → R𝑑 is the drift and is not necessarily the gradient of some log-
density.1 Furthermore, we can analyze other continuous-time Markov processes such
as piecewise deterministic Markov processes (PDMPs). For example, Hamiltonian
Monte Carlo [103] can be viewed as approximating a PDMP and the zig-zag process
is a recently-developed non-reversible PDMP designed for large Bayesian inference
(see Section 4.5).

In many large-data settings, computing the drift 𝑏(𝑋𝑡) in Eq. (4.1) can be ex-
pensive; for example, computing 𝑏(𝑋𝑡) = ∇ log 𝜋(𝑋𝑡) requires using all of the data
and may involve evaluating a complex function such as a differential equation solver.
Hence, it is desirable to replace 𝑏 with an approximation 𝑏̃. Such an approximation
changes the underlying diffusion process to

d𝑋̃𝑡 = 𝑏̃(𝑋̃𝑡) d𝑡+
√

2 d𝑊̃𝑡, (4.2)

where 𝑊̃𝑡 is a standard Brownian motion. In order to understand the quality of
different approximations, we need to quantify how the equilibrium distribution of
Eq. (4.1) differs from the equilibrium distribution of Eq. (4.2). We use the standard
Wasserstein metric to measure this distance. We recall the definition previously given
in Chapter 3:

Definition. The Wasserstein distance between distributions 𝜋 and 𝜋̃ is

𝑑𝒲(𝜋, 𝜋̃) = sup
𝜑∈𝐶𝐿(R𝑑)

|𝐸𝜋[𝜑]− 𝐸𝜋̃[𝜑]|,

where 𝐶𝐿(R𝑑) is the set of continuous functions 𝜑 : R𝑑 → R with Lipschitz constant
‖𝜑‖𝐿 ≤ 1.2

The distance between 𝜋 and 𝜋̃ should depend on how good the drift approximation
is, which can be quantified by ‖𝑏− 𝑏̃‖2.3 It is also natural for the distance to depend
on how quickly the original diffusion with drift 𝑏 mixes, since the faster it mixes, the
less time there is for the error to accumulate. Geometric contractivity is a useful
property which quantifies fast-mixing diffusions. For each 𝑥 ∈ R𝑑, let 𝜇𝑥,𝑡 denote the
law of 𝑋𝑡 |𝑋0 = 𝑥.

Assumption 4.A (Geometric contractivity). There exist constants 𝐶 > 0 and
0 < 𝜌 < 1 such that for all 𝑥, 𝑥′ ∈ R𝑑,

𝑑𝒲(𝜇𝑥,𝑡, 𝜇𝑥′,𝑡) ≤ 𝐶‖𝑥− 𝑥′‖2𝜌𝑡.

1All of our results can be extended to more general diffusions on a domain 𝒳 ⊆ R𝑑, d𝑋𝑡 =
𝑏(𝑋𝑡) + Σd𝑊𝑡 − 𝑛𝑡𝐿(d𝑡), where Σ is the covariance of the Brownian motion, and 𝑛𝑡𝐿 captures
the reflection forces at the boundary 𝜕𝒳 . To keep the exposition simple, we focus on the simpler
diffusion in the main text.

2Recall that the Lipschitz constant of function 𝜑 : R𝑑 → R is ‖𝜑‖𝐿 := sup𝑥,𝑦∈R𝑑
‖𝜑(𝑥)−𝜑(𝑦)‖2

‖𝑥−𝑦‖2
.

3For a function 𝜑 : R𝑛 → R𝑚, define ‖𝜑‖2 := sup𝑥∈R𝑛 ‖𝜑(𝑥)‖2.
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Geometric contractivity holds in many natural settings. Recall that a twice continuously-
differentiable function 𝜑 is 𝑘-strongly concave if for all 𝑥, 𝑥′ ∈ R𝑑

(∇𝜑(𝑥)−∇𝜑(𝑥′)) · (𝑥− 𝑥′) ≤ −𝑘‖𝑥− 𝑥′‖22. (4.3)

When 𝑏 = ∇ log 𝜋 and log 𝜋 is 𝑘-strongly concave, the diffusion is exponentially
ergodic with 𝐶 = 1 and 𝜌 = 𝑒−𝑘 (this can be shown using standard coupling argu-
ments [21]). In fact, exponential contractivity also follows if Eq. (4.3) is satisfied when
𝑥 and 𝑥′ are far apart and log 𝜋 has “bounded convexity” when 𝑥 and 𝑥′ are close
together [46]. Alternatively, Hairer et al. [67] provides a Lyapunov function-based
approach to proving exponential contractivity.

To ensure that the diffusion and the approximate diffusion are well-behaved, we
impose some standard regularity properties.

Assumption 4.B (Regularity conditions). Let 𝜋 and 𝜋̃ denote the stationary
distributions of the diffusions in Eq. (4.1) and Eq. (4.2), respectively.

1. The target density satisfies 𝜋 ∈ 𝐶2(R𝑑,R) and
∫︀
𝑥2𝜋(d𝑥) < ∞. The drift

satisfies 𝑏 ∈ 𝐶1(R𝑑,R𝑑) and ‖𝑏‖𝐿 <∞.

2. The approximate drift satisfies 𝑏̃ ∈ 𝐶1(R𝑑,R𝑑) and ‖𝑏̃‖𝐿 <∞.

3. If a function 𝜑 ∈ 𝐶(R𝑑,R) is 𝜋-integrable then it is 𝜋̃-integrable.

Here 𝐶𝑘(R𝑚,R𝑛) denotes the set of 𝑘-times continuously differentiable functions
from R𝑚 to R𝑛 and 𝐶(R𝑚,R𝑛) is the set of all Lebesgue-measurable function from R𝑚

to R𝑛. The only notable regularity condition is (3). In Appendix C.3, we discuss how
to verify it and why it can safely be treated as a mild technical condition. Further-
more, it is worth mentioning that the Lipschitz conditions can easily be weakened [62]

4.2 Main results
We can now state our main result, which quantifies the deviation in the equilibrium
distributions of the two diffusions in terms of the mixing rate and the difference
between the diffusions’ drifts.

Theorem 4.2.1 (Error induced by approximate drift). Let 𝜋 and 𝜋̃ denote the in-
variant distributions of the diffusions in Eq. (4.1) and Eq. (4.2), respectively. If the
diffusion Eq. (4.1) is exponentially ergodic with parameters 𝐶 and 𝜌, the regularity
conditions of Assumption 4.B hold, and ‖𝑏− 𝑏̃‖2 ≤ 𝜖, then

𝑑𝒲(𝜋, 𝜋̃) ≤ 𝐶𝜖

log(1/𝜌)
. (4.4)

Remark 4.2.2 (Coherency of the error bound). To check that the error bound of
Eq. (4.4) has coherent dependence on its parameters, consider the following thought
experiment. Suppose we change the time scale of the diffusion from 𝑡 to 𝑠 = 𝑎𝑡
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for some 𝑎 > 0. We are simply speeding up or slowing down the diffusion process
depending on whether 𝑎 > 1 or 𝑎 < 1. Changing the time scale does not affect the
equilibrium distribution and hence 𝑑𝒲(𝜋, 𝜋̃) remains unchanged. After time 𝑠 has
passed, the exponential contraction is 𝜌𝑎𝑡 and hence the effective contraction constant
is 𝜌𝑎 instead of 𝜌. Moreover, the drift at each location is also scaled by 𝑎 and hence
the drift error is 𝜖𝑎. The scaling 𝑎 thus cancels out in the error bound, which is
desirable since the error should be independent of how we set the time scale. �

Remark 4.2.3 (Tightness of the error bound). We can choose 𝑏 and 𝑏̃ such that the
bound in Eq. (4.4) is an equality, thus showing that, under the assumptions consid-
ered, Theorem 4.2.1 cannot be improved. Let 𝜋(𝑥) = N(𝑥;𝜇, 𝜎2𝐼) be the Gaussian
density with mean 𝜇 ∈ R𝑑 and covariance matrix 𝜎2𝐼 and let 𝜋̃(𝑥) = N(𝑥; 𝜇̃, 𝜎2𝐼).
The Wasserstein distance between two Gaussians with the same covariance is the
distance between their means, so 𝑑𝒲(𝜋, 𝜋̃) = ‖𝜇 − 𝜇̃‖2. Consider the correspond-
ing diffusions where 𝑏 = ∇ log 𝜋 and 𝑏̃ = ∇ log 𝜋̃. We have that for any 𝑥 ∈ R𝑑,
‖𝑏(𝑥) − 𝑏̃(𝑥)‖2 = 𝜎−2‖𝜇 − 𝜇̃‖2 =: 𝜖. Furthermore, the Hessian is (∇2 log 𝜋)(𝑥) =
−𝜎−2𝐼, which implies that 𝑏 is 𝜎−2-strongly concave. Therefore, per the discussion
in Section 4.1, exponential contractivity holds with 𝐶 = 1 and 𝜌 = 𝑒−𝜎−2 . We thus
conclude that

𝐶𝜖

log(1/𝜌)
=
𝜎−2‖𝜇− 𝜇̃‖2

𝜎−2
= ‖𝜇− 𝜇̃‖2 = 𝑑𝒲(𝜋, 𝜋̃).

and hence the bound of Theorem 4.2.1 is tight in this setting. �

Theorem 4.2.1 assumes that the approximate drift is a deterministic function and
that the error in the drift is uniformly bounded. We can generalize the results of
Theorem 4.2.1 to allow for the approximate diffusion to use stochastic drift with non-
uniform drift error. We will see that only the expected magnitude of the drift bias
affects the final error bound. Let 𝑏̃(𝑋̃𝑡, 𝑌𝑡) denote the approximate drift, which is now
a function of both the current location 𝑋̃𝑡 and an independent diffusion 𝑌𝑡 ∈ Rℓ:

d𝑋̃𝑡 = (𝑏̃(𝑋̃𝑡, 𝑌𝑡)) d𝑡+
√

2 d𝑊̃𝑋
𝑡 (4.5)

d𝑌𝑡 = 𝑏𝑎𝑢𝑥(𝑌𝑡) d𝑡+ Σ d𝑊̃ 𝑌
𝑡 ,

where Σ is an ℓ×ℓ matrix and the notation 𝑊̃𝑋
𝑡 and 𝑊̃ 𝑌

𝑡 highlights that the Brownian
motions in 𝑋̃𝑡 and 𝑌𝑡 are independent. Let 𝜋̃𝑍 denote the stationary distribution of
𝑍𝑡 := (𝑋̃𝑡, 𝑌𝑡). For measure 𝜇 and function 𝑓 , we write 𝜇(𝑓) :=

∫︀
𝑓(𝑥)𝜇(d𝑥) to reduce

clutter. We can now state a generalization of Theorem 4.2.1.

Theorem 4.2.4 (Error induced by stochastic approximate drift). Let 𝜋 and 𝜋̃ denote
the invariant distributions of the diffusions in Eqs. (4.1) and (4.5), respectively. As-
sume that there exists a measurable function 𝜖 ∈ 𝐶(R𝑑,R+) such that for (𝑋̃, 𝑌 ) ∼ 𝜋̃𝑍
and for all 𝑥 ∈ R𝑑,

‖𝑏(𝑥)− E[𝑏̃(𝑋̃, 𝑌 ) | 𝑋̃ = 𝑥]‖2 ≤ 𝜖(𝑥).

If the diffusion Eq. (4.1) is exponentially ergodic and the regularity conditions of
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Assumption 4.B hold, then

𝑑𝒲(𝜋, 𝜋̃) ≤ 𝐶 𝜋̃(𝜖)

log(1/𝜌)
.

Whereas the bound of Theorem 4.2.1 is proportional to the deterministic drift error
𝜖, the bound for the diffusion with a stochastic approximate drift is proportional to
the expected drift error bound 𝜋̃(𝜖). The bound of Theorem 4.2.4 thus takes into
account how the drift error varies with the location of the drift. Our results match
the asymptotic behavior for stochastic gradient Langevin dynamics documented in
Teh et al. [135]: in the limit of the step size going to zero, they show that the stochastic
gradient has no effect on the equilibrium distribution.

Example. Suppose 𝑌𝑡 is an Ornstein–Uhlenbeck process with ℓ = 𝑑, the dimensional-
ity of 𝑋̃𝑡. That is, for some 𝛼, 𝑣 > 0, d𝑌𝑡 = −𝛼𝑌𝑡d𝑡+

√
2𝑣 d𝑊̃ 𝑌

𝑡 . Then the equilibrium
distribution of 𝑌𝑡 is that of a Gaussian with covariance 𝜎2𝐼, where 𝜎2 := 𝑣/𝛼. Let
𝑏̃(𝑥, 𝑦) = 𝑏(𝑥) + 𝑦, so E[𝑏̃(𝑋̃, 𝑌 ) | 𝑋̃ = 𝑥] = 𝑏(𝑥) and hence 𝑑𝒲(𝜋, 𝜋̃) = 0. �

While exponential contractivity is natural and applies in many settings, it is useful
to have bounds on the Wasserstein distance of approximations when the diffusion
process mixes more slowly. We can prove the analogous guarantee of Theorem 4.2.1
when a weaker, polynomial contractivity condition is satisfied.

Assumption 4.C (Polynomial contractivity). There exist constants 𝐶 > 0, 𝛼 >
1, and 𝛽 > 0 such that for all 𝑥, 𝑥′ ∈ R𝑑,

𝑑𝒲(𝜇𝑥,𝑡, 𝜇𝑥′,𝑡) ≤ 𝐶‖𝑥− 𝑥′‖2(𝑡+ 𝛽)−𝛼.

The parameters 𝛼 and 𝛽 determines how quickly the diffusion converges to equi-
librium. Polynomial contractivity can be certified using, for example, the techniques
from Butkovsky [28] (see also the references therein).

Theorem 4.2.5 (Error induced by approximate drift, polynomial contractivity). Let
𝜋 and 𝜋̃ denote the invariant distributions of the diffusions in Eq. (4.1) and Eq. (4.2),
respectively. If the diffusion Eq. (4.1) is polynomially ergodic with parameters 𝐶, 𝛼,
and 𝛽, the regularity conditions of Assumption 4.B hold, and ‖𝑏− 𝑏̃‖2 ≤ 𝜖, then

𝑑𝒲(𝜋, 𝜋̃) ≤ 𝐶𝜖

(𝛼− 1)𝛽𝛼−1
. (4.6)

Remark 4.2.6 (Coherency of the error bound). The error bound of Eq. (4.6) has a
coherent dependence on its parameters, just like Eq. (4.4). If we change the time scale
of the diffusion from 𝑡 to 𝑠 = 𝑎𝑡 for some 𝑎 > 0, the polynomial contractivity constants
𝐶, 𝛼, and 𝛽 become, respectively, 𝐶/𝑎𝛼, 𝛼, and 𝛽/𝑎. Making these substitutions and
replacing 𝜖 by 𝜖𝑎, one can check that the scaling 𝑎 cancels out in the error bound, so
the error is independent of how we set the time scale. �
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4.3 Overview of analysis techniques

We use Stein’s method [13, 119, 130] to bound the Wasserstein distance between 𝜋
and 𝜋̃ as a function of a bound on ‖𝑏 − 𝑏̃‖2 and the mixing time of 𝜋. We describe
the analysis ideas for the setting when ‖𝑏 − 𝑏̃‖2 < 𝜖 (Theorem 4.2.1); the analysis
with stochastic drift (Theorem 4.2.4) or assuming polynomial contractivity (Theo-
rem 4.2.5) is similar. All of the details are in Appendix C.2.

For a diffusion (𝑋𝑡)𝑡≥0 with drift 𝑏, the corresponding infinitesimal generator sat-
isfies

𝒜𝑏𝜑(𝑥) = 𝑏(𝑥) · ∇𝜑(𝑥) + ∆𝜑(𝑥)

for any function 𝜑 that is twice continuously differentiable and vanishing at infinity.
See, e.g., Ethier and Kurtz [48] for an introduction to infinitesimal generators. Under
quite general conditions, the invariant measure 𝜋 and the generator 𝒜𝑏 satisfy

𝜋(𝒜𝑏𝜑) = 0.

For any measure 𝜈 on R𝑑 and set of test functions ℱ ⊆ 𝐶2(R𝑑,R), we can define the
Stein discrepancy as:

𝒮(𝜈,𝒜𝑏,ℱ) := sup
𝜑∈ℱ
|𝜋(𝒜𝑏𝜑)− 𝜈(𝒜𝑏𝜑)| = sup

𝜑∈ℱ
|𝜈(𝒜𝑏𝜑)|.

The Stein discrepancy quantifies the difference between 𝜈 and 𝜋 in terms of the
maximum difference in the expected value of a function (belonging to the transformed
test class {𝒜𝑏𝜑 |𝜑 ∈ ℱ}) under these two distributions. We can analyze the Stein
discrepancy between 𝜋 and 𝜋̃ as follows. Consider a test set ℱ such that ‖∇𝜑‖2 ≤ 1
for all 𝜑 ∈ ℱ , which is equivalent to having ‖𝜑‖𝐿 ≤ 1. We have that

𝒮(𝜋̃,𝒜𝑏,ℱ) = sup
𝜑∈ℱ
|𝜋̃(𝒜𝑏𝜑)| = sup

𝜑∈ℱ
|𝜋̃(𝒜𝑏𝜑−𝒜𝑏̃𝜑)|

= sup
𝜑∈ℱ
|𝜋̃(∇𝜑 · 𝑏−∇𝜑 · 𝑏̃)|

≤ sup
𝜑∈ℱ
|𝜋̃(‖∇𝜑‖2‖𝑏− 𝑏̃‖2)| ≤ 𝜖,

where we have used the definition of Stein discrepancy, that 𝜋̃(𝒜𝑏̃𝜑) = 0, the def-
inition of the generator, the Cauchy-Schwartz inequality, that ‖∇𝜑‖2 ≤ 1, and the
assumption ‖𝑏 − 𝑏̃‖2 ≤ 𝜖. It remains to show that the Wasserstein distance satisfies
𝑑𝒲(𝜋, 𝜋̃) ≤ 𝐶𝜋𝒮(𝜋̃,𝒜𝑏,ℱ) for some constant 𝐶𝜋 that may depend on 𝜋. This would
then allow us to conclude that 𝑑𝒲(𝜋, 𝜋̃) ≤ 𝐶𝜋𝜖. To obtain 𝐶𝜋, for each 1-Lipschitz
function ℎ, we construct the solution 𝑢ℎ to the differential equation

ℎ− 𝜋(ℎ) = 𝒜𝑔𝑢 (4.7)

and show that ‖∇𝑢ℎ‖2 ≤ 𝐶𝜋‖∇ℎ‖2.
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4.4 Application: computational–statistical trade-offs

As an application of our results we analyze the behavior of the unadjusted Langevin
Monte Carlo algorithm (ULA) [118] when approximate gradients of the log-likelihood
are used. ULA uses a discretization of the continuous-time Langevin diffusion to
approximately sample from the invariant distribution of the diffusion. We prove
conditions under which we can obtain more accurate samples by using an approximate
drift derived from a Taylor expansion of the exact drift.

For the diffusion (𝑋𝑡)𝑡≥0 driven by drift 𝑏 as defined in Eq. (4.1) and a non-
increasing sequence of step sizes (𝛾𝑖)𝑖≥1, the associated ULA Markov chain is

𝑋 ′
𝑖+1 = 𝑋 ′

𝑖 + 𝛾𝑖+1 𝑏(𝑋
′
𝑖) +

√︀
2𝛾𝑖+1 𝜉𝑖+1, 𝜉𝑖+1

i.i.d.∼ N(0, 1). (4.8)

Recently, substantial progress has been made in understanding the approximation
accuracy of ULA [27, 39, 43]. These analyses show, as a function of the discretiza-
tion step size 𝛾𝑖, how quickly the distribution of 𝑋 ′

𝑖 converges to the desired target
distribution.

In many big data settings, however, computing 𝑏(𝑋 ′
𝑖) exactly at every step is

computationally expensive. Given a fixed computational budget, one option is to
compute 𝑏(𝑋 ′

𝑖) precisely and run the discretized diffusion for a small number of steps
to generate samples. Alternatively, we could replace 𝑏(𝑋 ′

𝑖) with an approximate drift
𝑏̃(𝑋 ′

𝑖) which is cheaper to compute and run the discretized approximate diffusion for
a larger number of steps to generate samples. While approximating the drift can
introduce error, running for more steps can compensate by sampling from a better
mixed chain. Thus, our objective is to compare the ULA chain using an exact drift
initialized at some point 𝑥⋆ ∈ R𝑑 to a ULA chain using an approximate drift initialized
at the same point. We denote the exact and approximate drift chains by 𝑋 ′

𝑥⋆,𝑖 and
𝑋̃ ′

𝑥⋆,𝑖, respectively, and denote laws of these chains by 𝜇⋆
𝑖 and 𝜇̃⋆

𝑖 .
For concreteness, we analyze generalized linear models with unnormalized log-

densities of the form

ℒ(𝑥) := log 𝜋0(𝑥) +
𝑁∑︁
𝑖=1

𝜑𝑖(𝑥 · 𝑦𝑖),

where 𝑦1, . . . , 𝑦𝑁 ∈ R𝑑 is the data and 𝑥 is the parameter. In this setting the drift is
𝑏(𝑥) = ∇ℒ(𝑥). We take 𝑥⋆ = arg max𝑥 ℒ(𝑥) and approximate the drift with a Taylor
expansion around 𝑥⋆:

𝑏̃(𝑥) := (∇2 log 𝜋0)(𝑥
⋆)(𝑥− 𝑥⋆) +

𝑁∑︁
𝑖=1

𝜑′′
𝑖 (𝑥⋆ · 𝑦𝑖)𝑦𝑖𝑦⊤𝑖 (𝑥− 𝑥⋆), (4.9)

where ∇2 is the Hessian operator. The quadratic approximation of Eq. (4.9) basically
corresponds to taking a Laplace approximation of the log-likelihood. In practice,
higher-order Taylor truncation or other approximations can be used, and our analysis
can be extended to quantify the trade-offs in those cases as well. Here we focus on the
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second-order approximation as a simple illustration of the computational–statistical
trade-off.

In order for the Taylor approximation to be well-behaved, we require the prior 𝜋0
and link functions 𝜑𝑖 to satisfying some regularity conditions, which are usually easy
to check in practice.

Assumption 4.D (Concavity, smoothness, and asymptotic behavior of data).

1. The function log 𝜋0 ∈ 𝐶3(R𝑑,R) is strongly concave, ‖∇ log 𝜋0‖𝐿 < ∞, and
‖∇2[𝜕𝑗 log 𝜋0]‖2 < ∞ for 𝑗 = 1, . . . , 𝑑, where ‖ · ‖2 denotes the matrix spectral
norm.

2. For 𝑖 = 1, . . . , 𝑁 , the function 𝜑𝑖 ∈ 𝐶3(R,R) is strongly concave, ‖𝜑′
𝑖‖𝐿 < ∞,

and ‖𝜑′′′
𝑖 ‖∞ <∞.

3. The data satisfies ‖
∑︀𝑁

𝑖=1 𝑦𝑖𝑦
⊤
𝑖 ‖2 = Θ(𝑁).

We measure computational cost by the number of 𝑑-dimensional inner products
performed. Running ULA with the original drift 𝑏 for 𝑇 steps costs 𝑇𝑁 because each
step needs to compute 𝑥 · 𝑦𝑖 for each of the 𝑁 𝑦𝑖’s. Running ULA with the Taylor
approximation 𝑏̃, we need to compute

∑︀𝑁
𝑖=1 𝜑

′′
𝑖 (𝑥⋆ · 𝑦𝑖)𝑦𝑖𝑦⊤𝑖 once up front, which costs

𝑁𝑑, and then for each step we just multiply this 𝑑-by-𝑑 matrix with 𝑥 − 𝑥⋆, which
costs 𝑑. So the total cost of running approximate ULA for 𝑇 steps is (𝑇 +𝑁)𝑑.

Theorem 4.4.1 (Computational–statistical trade-off for ULA). Set the step size 𝛾𝑖 =
𝛾1𝑖

−𝛼 for fixed 𝛼 ∈ (0, 1) and suppose the ULA of Eq. (4.8) is run for 𝑇 > 𝑑 steps.
If Assumption 4.D holds and 𝑇 is chosen such that the computational cost of the
second-order approximate ULA using drift Eq. (4.9) equals that of the exact ULA,
then 𝛾1 may be chosen such that

𝑑2𝒲(𝜇⋆
𝑇 , 𝜋) = 𝑂̃

(︂
𝑑

𝑇𝑁

)︂
and 𝑑2𝒲(𝜇̃⋆

𝑇
, 𝜋) = 𝑂̃

(︂
𝑑2

𝑁2𝑇
+

𝑑3

𝑁2

)︂
.

The ULA procedure of Eq. (4.8) has Wasserstein error decreasing like 1/𝑁 for
data size 𝑁 . Because approximate ULA can be run for more steps at the same
computational cost, its error decreases as 1/𝑁2. Thus, for large 𝑁 and fixed 𝑇 and
𝑑, approximate ULA with drift 𝑏̃ achieves more accurate sampling than ULA with 𝑏.
A conceptual benefit of our results is that we can cleanly decompose the final error
into the discretization error and the equilibrium bias due to approximate drift. Our
theorems in Section 4.2 quantifies the equilibrium bias, and we can apply existing
techniques to bound the discretization error.

4.5 Extension: piecewise deterministic Markov pro-
cesses

We next demonstrate the generality of our techniques by providing a perturbation
analysis of piecewise deterministic Markov processes (PDMPs), which are continuous-
time processes that are deterministic except at random jump times. Originating with
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(a) (b)

Figure 4-1: (a) Gradient error 𝜖 versus the Wasserstein distance between 𝜋𝛿 and
𝜋̃𝛿,𝜖, the stationary distribution of the diffusion with approximate drift 𝑏̃𝛿,𝜖(𝑥) =
∇ log 𝜋𝛿(𝑥) + 𝜖. The solid lines are the simulation results and the dotted lines are
the theoretical upper bounds obtained from Theorem 4.2.1. The simulation results
closely match the theoretical bounds and show linear growth in 𝜖, as predicted by the
theory. Due to Monte Carlo error the simulation estimates sometimes slightly exceed
the theoretical bounds. (b) The 𝑦-axis measures the Wasserstein distance between
the true posterior distribution and the finite-time distribution of the exact gradient
ULA (ULA) and the approximate gradient ULA (AGULA). Except for when the
number of data points 𝑁 < 100, AGULA shows superior performance, in agreement
with the analysis of Theorem 4.4.1. For all experiments the Wasserstein distance was
estimated 10 times, each time using 1,000 samples from each distribution.

the work of Davis [41], there is now a rich literature on the ergodic and convergence
properties of PDMPs [8, 16, 36, 53, 99]. They have been used to model a range of
phenomena including communication networks, neuronal activity, and biologic popu-
lation models (see [8] and references therein). Recently, PDMPs have also been used
to design novel MCMC inference schemes. zig-zag processes (ZZPs) [18–20] are a
class of PDMPs that are particularly promising for inference. ZZPs can be simulated
exactly (making Metropolis-Hastings corrections unnecessary) and are non-reversible,
which can potentially lead to more efficient sampling [97, 102].

Our techniques can be readily applied to analyze the accuracy of approximate
PDMPs. For concreteness we demonstrate the results for ZZPs in detail and defer
the general treatment of PDMPs, which includes an idealized version of Hamiltonian
Monte Carlo, to Appendix C.4. The ZZP is defined on the space 𝐸 = R𝑑 ×ℬ, where
ℬ := {−1,+1}𝑑. Densities on ℬ are with respect to the counting measure.

Informally, the behavior of a ZZP can be described as follows. The trajectory is
𝑋𝑡 and its velocity is Θ𝑡, so 𝑑

𝑑𝑡
𝑋𝑡 = Θ𝑡. At random times, a single coordinate of

Θ𝑡 flips signs. In between these flips, the velocity is a constant and the trajectory is
a straight line (hence the name “zig-zag”). The rate at which Θ𝑡 flips a coordinate
is time inhomogeneous. The 𝑖-th component of Θ switches at rate 𝜆𝑖(𝑋𝑡,Θ𝑡). By
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choosing the switching rates appropriately, the ZZP can be made to sample from
the desired distribution. More precisely, the ZZP (𝑋𝑡,Θ𝑡)𝑡≥0 is determined by the
switching rate 𝜆 ∈ 𝐶0(𝐸,R𝑑

+) and has generator

𝒜𝜆𝜑(𝑥, 𝜃) = 𝜃 · ∇𝑥𝜑(𝑥, 𝜃) + 𝜆(𝑥, 𝜃) · ∇𝜃𝜑(𝑥, 𝜃) (4.10)

for any sufficiently regular 𝜑 : 𝐸 → R. Here ∇𝑥𝜑 denotes the gradient of 𝜑 with
respect to 𝑥 and ∇𝜃𝜑 is the discrete differential operator.4 Let (𝑎)+ := max(0, 𝑎)
denote the positive part of 𝑎 ∈ R and 𝜕𝑖𝜑 := 𝜕𝜑

𝜕𝑥𝑖
. The following result shows how to

construct a ZZP with invariant distribution 𝜋.

Theorem 4.5.1 (Bierkens et al. [20, Theorem 2.2, Proposition 2.3]). Suppose log 𝜋 ∈
𝐶1(R𝑑) and 𝛾 ∈ 𝐶0(𝐸,R𝑑

+) satisfies 𝛾𝑖(𝑥, 𝜃) = 𝛾𝑖(𝑥,𝑅𝑖𝜃). Let

𝜆𝑖(𝑥, 𝜃) = (−𝜃𝑖𝜕𝑖 log 𝜋(𝑥))+ + 𝛾𝑖(𝑥, 𝜃).

Then the Markov process with generator 𝒜𝜆 has invariant distribution 𝜋𝐸(d𝑥, 𝜃) =
2−𝑑𝜋(d𝑥).

Analogously to the approximate diffusion setting, we compare (𝑋𝑡,Θ𝑡)𝑡≥0 to an
approximating ZZP (𝑋̃𝑡, Θ̃𝑡)𝑡≥0 with switching rate 𝜆̃ ∈ 𝐶0(𝐸,R𝑑

+). For example, if
𝜋̃ is an approximating density, the approximate switching rate could be chosen as

𝜆̃𝑖(𝑥, 𝜃) = (−𝜃𝑖𝜕𝑖 log 𝜋̃(𝑥))+ + 𝛾𝑖(𝑥, 𝜃). (4.11)

To relate the errors in the switching rates to the Wasserstein distance in the final
distributions, we use the same strategy as before: apply Stein’s method to the ZZP
generator in Eq. (4.10). We rely on ergodicity and regularity conditions that are
analogous to those for diffusions. We write (𝑋𝑥,𝜃,𝑡,Θ𝑥,𝜃,𝑡) to denote the version of the
ZZP satisfying (𝑋𝑥,𝜃,0,Θ𝑥,𝜃,0) = (𝑥, 𝜃) and denote its law by 𝜇𝑥,𝜃,𝑡.

Assumption 4.E (ZZP polynomial ergodicity). There exist constants 𝐶 > 0,
𝛼 > 1, and 𝛽 > 0 such that for all 𝑥 ∈ R𝑑, 𝜃 ∈ ℬ, and 𝑖 ∈ [𝑑],

𝑑𝒲(𝜇𝑥,𝜃,𝑡, 𝜇𝑥,𝑅𝑖𝜃,𝑡) ≤ 𝐶(𝑡+ 𝛽)−𝛼.

The ZZP polynomial ergodicity condition is looser than that used for diffusions.
Indeed, we only need a quantitative bound on the ergodicity constant when the chains
are started with the same 𝑥 value. Together with the fact that ℬ is compact, this
simplifies verification of the condition, which can be done using well-developed cou-
pling techniques from the PDMP literature [8, 16, 53, 99] as well as more general
Lyapunov function-based approaches [67].

Our main result of this section bounds the error in the invariant distributions due
to errors in the ZZP switching rates. It is more natural to measure the error between
𝜆 and 𝜆̃ in terms of the ℓ1 norm.

4∇𝜃𝜑 := (𝜕𝜃,1𝜑, . . . , 𝜕𝜃,𝑑𝜑), where 𝜕𝜃,𝑖𝜑(𝑥, 𝜃) := 𝜑(𝑥,𝑅𝑖𝜃) − 𝜑(𝑥, 𝜃) and for 𝑖 ∈ [𝑑], the reversal

function 𝑅𝑖 : ℬ → ℬ is given by (𝑅𝑖𝜃)𝑗 :=

{︃
−𝜃𝑗 𝑗 = 𝑖

𝜃𝑗 𝑗 ̸= 𝑖.
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Theorem 4.5.2 (ZZP error induced by approximate switching rate). Assume the
ZZP with switching rate 𝜆 (respectively 𝜆̃) has invariant distribution 𝜋 (resp. 𝜋̃).
Also assume that

∫︀
𝐸
𝑥2𝜋(d𝑥, d𝜃) < ∞ and if a function 𝜑 ∈ 𝐶(𝐸,R) is 𝜋-integrable

then it is 𝜋̃-integrable. If the ZZP with switching rate 𝜆 is polynomially ergodic with
constants 𝐶, 𝛼, and 𝛽 and ‖𝜆− 𝜆̃‖1 ≤ 𝜖, then

𝑑𝒲(𝜋, 𝜋̃) ≤ 𝐶𝜖

(𝛼− 1)𝛽𝛼−1
.

Remark 4.5.3. If the approximate switching rate takes the form of Eq. (4.11), then
‖∇ log 𝜋 −∇ log 𝜋̃‖1 ≤ 𝜖 implies ‖𝜆− 𝜆̃‖1 ≤ 𝜖. �

4.6 Experiments

We used numerical experiments to investigate whether our bounds capture the true
behavior of approximate diffusions and their discretizations.

Approximate Diffusions. For our theoretical results to be a useful guide in
practice, we would like the Wasserstein bounds to be reasonably tight and have the
correct scaling in the problem parameters (e.g., in ‖𝑏− 𝑏̃‖2). To test our main result
concerning the error induced from using an approximate drift (Theorem 4.2.1), we
consider mixtures of two Gaussian densities of the form

𝜋𝛿(𝑥) =
1

2(2𝜋)𝑑/2

(︁
𝑒−‖𝑥−𝛿/2‖22/2 + 𝑒−‖𝑥+𝛿/2‖22/2

)︁
,

where 𝛿 ∈ R𝑑 parameterizes the difference between the means of the Gaussians. If
‖𝛿‖2 < 2, then 𝜋𝛿 is (1 − ‖𝛿‖2/4)-strongly log-concave; if ‖𝛿‖2 = 2, then 𝜋𝛿 is log-
concave; and if ‖𝛿‖2 > 2, then 𝜋𝛿 is not log-concave, but is log-concave in the tails.
Thus, for all choices of 𝛿, the diffusion with drift 𝑏𝛿(𝑥) := ∇ log 𝜋𝛿(𝑥) is exponentially
ergodic. Importantly, this class of Gaussian mixtures allows us to investigate a range
of practical regimes, from strongly unimodal to highly multi-modal distributions. For
𝑑 = 1 and a variety of choices of 𝛿, we generated 1,000 samples from the target dis-
tribution 𝜋𝛿 (which is the stationary distribution of a diffusion with drift 𝑏𝛿(𝑥)) and
from 𝜋̃𝛿,𝜖 (which is the stationary distribution of the approximate diffusion with drift
𝑏̃𝛿,𝜖(𝑥) := 𝑏𝛿(𝑥) + 𝜖) for 𝜖 = 0.05, 0.1, 0.25, 0.5. We then calculated the Wasserstein
distance between the empirical distribution of the target and the empirical distribu-
tion of each approximation. Fig. 4-1a shows the empirical Wasserstein distance (solid
lines) for 𝛿 = 0.25, 0.5, 1.0 along with the corresponding theoretical bounds from The-
orem 4.2.1 (dotted lines). The two are in close agreement. We also investigated larger
distances for 𝛿 = 1.0, 2.0, 3.0. Here the exponential contractivity constants that can
be derived from Eberle [46] are rather loose. Importantly, however, for all values of 𝛿
considered, the Wasserstein distance grows linearly in 𝜖, as predicted by our theory.
Results for 𝑑 > 1 show similar linear behavior in 𝜖, though we omit the plots.

Computational–statistical trade-off. We illustrate the computational–statistical
trade-off of Theorem 4.4.1 in the case of logistic regression. This corresponds to
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𝜑𝑖(𝑡) = 𝜑𝑙𝑟(𝑡) := − log(1 + 𝑒−𝑡). We generate data 𝑦1, 𝑦2, . . . according to the follow-
ing process:

𝑧𝑖 ∼ Bern(.5), 𝜁𝑖 ∼ N(𝜇𝑧𝑖 , 𝐼), 𝑦𝑖 = (2𝑧𝑖 − 1)𝜁𝑖,

where 𝜇0 = (0, 0, 1, 1) and 𝜇1 = (1, 1, 0, 0). We restrict the domain 𝒳 to a ball of
radius 3, 𝒳 = {𝑥 ∈ R4 | ‖𝑥‖2 ≤ 3}, and add a projection step to the ULA algo-
rithm [27], replacing 𝑍 ′

𝑖 with arg min𝑧∈𝒳 ‖𝑍 ′
𝑖 − 𝑧‖2. While Theorem 4.4.1 assumes

𝒳 = R4, the numerical results here on the bounded domain still illustrate our key
point: for the same computational budget, computing fast approximate gradients and
running the ULA chain for longer can produce a better sampler. Fig. 4-1b shows that
except for very small 𝑁 , the approximate gradient ULA (AGULA), which uses the
approximation in Eq. (4.9), produces better performance than exact gradient ULA
(ULA) with the same budget. For each data-set size (𝑁), the true posterior dis-
tribution was estimated by running an adaptive Metropolis-Hastings (MH) sampler
for 100,000 iterations. ULA and AGULA were each run 1,000 times to empirically
estimate the approximate posteriors. We then calculated the Wasserstein distance
between the ULA and AGULA empirical distributions and the empirical distribution
obtained from the MH sampler.

4.7 Discussion

Related Work. Recent theoretical work on scalable MCMC algorithms has yielded
numerous insights into the regimes in which such methods produce computational
gains [5, 76, 108, 120]. Many of these works focused on approximate Metropolis-
Hastings algorithms, rather than gradient-based MCMC. Moreover, the results in
these papers are for discrete chains, whereas our results also apply to continuous dif-
fusions as well as other continuous-time Markov processes such as the zig-zag process.
Perhaps the closest to our work is that of Rudolf and Schweizer [120] and Gorham
et al. [62]. The former studies general perturbations of Markov chains and includes
an application to stochastic Langevin dynamics. They also rely on a Wasserstein
contraction condition, like our Assumption 4.A, in conjunction with a Lyapunov con-
dition on the perturbed chain. However, our more specialized analysis is particularly
transparent and leads to tighter bounds in terms of the contraction constant 𝜌: the
bound of Rudolf and Schweizer [120] is proportional to (1− 𝜌)−1 whereas our bound
is proportional to −(log 𝜌)−1. Another advantage of our approach is that our results
are more straightforward to apply since we do not need to directly analyze the Lya-
punov potential and the perturbation ratios as in Rudolf and Schweizer [120]. Our
techniques also apply to the weaker polynomial contraction setting. Gorham et al.
[62] have results of similar flavor to ours and also rely on Stein’s method, but their
assumptions and target use cases differ from ours. Our results in Section 4.4, which
apply when ULA is used with a deterministic approximation to the drift, complement
the work of Teh et al. [135] and Vollmer et al. [138], which provides (non-)asymptotic
analysis when the drift is approximated stochastically at each iteration.
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Conclusion. We have established general results on the accuracy of diffusions
with approximate drifts. As an application, we show how this framework can quantify
the computational–statistical trade-off in approximate gradient ULA. The example
in Section 5.5 illustrates how the log-concavity constant can be estimated in practice
and how theory provides reasonably precise error bounds. We expect our general
framework to have many further applications. In particular, an interesting direction
is to extend our framework to analyze the trade-offs in subsampling Hamiltonian
Monte Carlo algorithms and stochastic Langevin dynamics.
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Chapter 5

Fast Generalized Maximum Mean
Discrepancies

5.1 Introduction

Maximum mean discrepancies [MMDs, 63] like the kernel Stein discrepancy [KSD,
35, 61, 86] provide a principled and convenient way to compute the distance between
probability distributions. They have been applied to a range of problems in machine
learning and statistics, including measuring the quality of samples from approximate
Bayesian inference algorithms [61], goodness-of-fit testing [35, 75, 86], two-sample
testing [34, 63], and approximate Bayesian inference [85].

Unfortunately, the computation of an MMD requires evaluating a kernel function
at every pair of sample points, making its use prohibitive for large sample sizes. Thus,
substantial efforts have been devoted to approximating MMDs, with the objective of
obtaining 𝑜(𝑁2) running times given 𝑁 sample points.1 Popular approaches approx-
imate the MMD in Θ(𝑁𝑀) time using a finite feature expansion of size 𝑀 based on
random Fourier features [72, 113, 128, 132, 149], other types of randomly sampled
features [9, 25, 34, 38, 75], or the Nyström method [101, 144, 146]. However, ex-
isting analyses only guarantee 𝑂𝑃 (𝑀−1/2)-precision estimates of the reference MMD
and require Θ(𝑁2) time to achieve the typical Θ(𝑁−1/2) precision of the reference
MMD.2 The aim of this work is to provide practical prescriptions for improving this
computation–accuracy trade-off.

To this end, in Section 5.3, we first introduce a new class of kernel-based dis-
crepancy measures, generalized MMDs (GMMDs), and establish upper and lower
bounds in terms of standard reference MMDs. We then develop cheap stochastic
approximations, fast GMMDs (fGMMDs), that closely approximate each GMMD. In
Section 5.4, we derive high probability relative error bounds for fGMMDs and, for any
𝛾 > 0, show how to compute 𝑂𝑃 (𝑁−1/2)-precision estimates of numerous GMMDs
and many common MMDs in 𝑂(𝑁1+𝛾) (near-linear) time when the GMMD or MMD
precision is Ω(𝑁−1/2).

1In the two-sample setting, we assume each sample has size 𝑁 .
2See Section 5.4.2 for a more detailed discussion of MMD precision and its import.
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In the context of hypothesis testing, we further derive the asymptotic distribution
of the fGMMD when sample points are drawn i.i.d. and develop an asymptotically
exact and full-power test of goodness of fit. We validate the benefits of fGMMDs in
Section 5.5 by using them to select hyperparameters of biased Markov chain Monte
Carlo (MCMC) samplers and to conduct fast goodness-of-fit tests. We obtain high-
quality results using only 10-25 features.

Notation For a (signed) measure 𝜇, we abuse notation and write

𝜇(𝑓) :=

∫︁
𝑓(𝑥)𝜇(d𝑥).

If 𝜇𝑖 is a measure on 𝒳𝑖 and 𝑓 : 𝒳1 ×𝒳2 → R,

(𝜇1 × 𝜇2)(𝑓) :=

∫︁ ∫︁
𝑓(𝑥1, 𝑥2)𝜇1(d𝑥1)𝜇2(d𝑥2).

If 𝜇 is a measure on 𝒳 and 𝑓 : 𝒳 ×𝒳 → R, then 𝜇 applied to 𝑓 is assumed to operate
on the first argument of 𝑓 : (𝜇𝑓)(𝑥′) :=

∫︀
𝑓(𝑥, 𝑥′)𝜇(d𝑥). For an operator, if there is

ambiguity we use a subscript to indicate the variable it operates on. For example,
∇𝑥𝑓(𝑥, 𝑦) denotes the gradient of 𝑓(𝑥, 𝑦) with respect to its first argument while
𝜕𝑥𝑑

𝑓(𝑥, 𝑦) denotes the partial derivative of 𝑓(𝑥, 𝑦) with respect to 𝑥𝑑. We denote the
generalized Fourier transform of a function 𝑓 by 𝑓 or F(𝑓) and the inverse Fourier
transform by F−1(𝑓). The convolution of functions 𝑓 and 𝑔 is denoted (𝑓 * 𝑔)(𝑥) =∫︀
𝑓(𝑦)𝑔(𝑥− 𝑦) d𝑦. For 𝑟 ≥ 1 and a measure (or density) 𝜇, we write 𝐿𝑟(𝜇) to denote

the space of functions with 𝜇-integrable 𝑟-th moment. The corresponding norm is
‖𝑓‖𝐿𝑟(𝜇) :=

(︀∫︀
|𝑓(𝑥)|𝑟𝜇(d𝑥)

)︀1/𝑟. We write 𝐿𝑟 when 𝜇 is the Lebesgue measure. We

let 𝒟
=⇒ and 𝑃→ denote convergence in distribution and in probability, respectively.

For a complex number 𝑎, 𝑎 denotes its complex conjugate. For 𝐽 ∈ N, define [𝐽 ] :=
{1, . . . , 𝐽}.

5.2 Maximum mean discrepancies
In sample quality measurement and goodness-of-fit testing, our aim is to quantify how
well a sample 𝑄𝑁 = 1

𝑁

∑︀𝑁
𝑛=1 𝛿𝑥𝑛 with sample points 𝑥1, . . . , 𝑥𝑁 ∈ 𝒳 ⊆ R𝐷 approx-

imates a fixed target distribution 𝑃 on 𝒳 . It is common to frame this comparison
in terms of an integral probability metric [100] measuring the maximum discrepancy
between sample and target expectations over a class of test functions. When the class
of test functions is the unit ball of a reproducing kernel Hilbert space (RKHS), one
recovers the maximum mean discrepancy (MMD) [63],

MMD2
𝑘0

(𝑄𝑁 , 𝑃 ) = (∆𝑁 ×∆𝑁)𝑘0

=
1

𝑁2

𝑁∑︁
𝑛=1

𝑁∑︁
𝑛′=1

𝑘0(𝑥𝑛, 𝑥𝑛′)− 2

𝑁

𝑁∑︁
𝑛=1

(𝑃𝑘0)(𝑥𝑛) + (𝑃 × 𝑃 )𝑘0,
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where 𝑘0 : 𝒳 × 𝒳 → R is a reproducing kernel (i.e., a symmetric, positive definite
function) and ∆𝑁 is the signed measure 𝑄𝑁 − 𝑃 .

An important special case of an MMD is the kernel Stein discrepancy (KSD) [35,
61, 86], which avoids explicit integration under 𝑃 by employing a Stein kernel

𝑘0(𝑥, 𝑦) =
∑︀𝐷

𝑑=1
1

𝑝(𝑥)𝑝(𝑦)
𝜕𝑥𝑑

𝜕𝑦𝑑(𝑝(𝑥)𝑘(𝑥, 𝑦)𝑝(𝑦)) (5.1)

designed to have zero mean under 𝑃 . Here, 𝑝 is the (Lebesgue) density of 𝑃 , and 𝑘
is any continuously differentiable base reproducing kernel.

A principal drawback of the generic MMD is its quadratic computational cost in
the number of sample points. In the sections to follow, we will show how to construct
alternative kernel-based discrepancy measures that retain the theoretical and practical
benefits of a reference MMD at a reduced cost.

5.3 Generalized MMDs

Beginning with a reference MMD, we derive a family of generalized MMDs (GMMDs)
which upper bound the MMD and, in certain special cases, are exactly equal to
the reference MMD. We then show how to efficiently approximate GMMDs using
importance sampling. We call the resulting stochastic discrepancy measures fast
GMMDs.

We begin by restricting our focus to kernels of the form

𝑘0(𝑥, 𝑦) =
∑︀𝐽

𝑗=1

∫︀
𝑘
1/2
𝑗 (𝑥, 𝜔)𝑘

1/2
𝑗 (𝑦, 𝜔)𝜌(𝜔) d𝜔, (5.2)

where 𝐽 ∈ N, 𝜌 nonnegative, and 𝑘1/2𝑗 (𝑥, ·) ∈ 𝐿2(𝜌) for all 𝑥 ∈ 𝒳 . This class is broad
enough to cover commonly employed kernels such as translation invariant kernels

𝑘0(𝑥, 𝑦) = Φ(𝑥− 𝑦) =
∫︀
𝑒𝑖⟨𝜔,𝑥⟩𝑒𝑖⟨𝜔,𝑦⟩Φ̂(𝜔) d𝜔,

polynomial kernels

𝑘0(𝑥, 𝑦) = (⟨𝑥, 𝑦⟩+ 𝑐)𝑏 =
∑︀𝐽

𝑗=1𝐴𝑗(𝑥)𝐴𝑗(𝑦),

and Stein kernels of the form∑︀𝐷
𝑑=1

1
𝑝(𝑥)𝑝(𝑦)

𝜕𝑥𝑑
𝜕𝑦𝑑(𝑝(𝑥)𝐴(𝑥)Φ(𝑥− 𝑦)𝐴(𝑦)𝑝(𝑦))

=
𝐷∑︁

𝑑=1

∫︀ 𝜕𝑥𝑑 (𝑝(𝑥)𝐴(𝑥)𝑒𝑖⟨𝜔,𝑥⟩)

𝑝(𝑥)

𝜕𝑦𝑑 (𝑝(𝑦)𝐴(𝑦)𝑒𝑖⟨𝜔,𝑦⟩)

𝑝(𝑦)
Φ̂(𝜔) d𝜔.

The kernel decomposition Eq. (5.2) allows us to upper bound MMD𝑘0 using the
generalized Hölder’s inequality and the Babenko-Beckner inequality. For any 𝑟 ∈
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[1, 2], 𝑠 = 𝑟/(𝑟 − 1), and 𝑡 = 𝑟/(2− 𝑟), we have

MMD2
𝑘0

(𝑄𝑁 , 𝑃 ) =
∑︀𝐽

𝑗=1

∫︀
|(∆𝑁𝑘

1/2
𝑗 )(𝜔)|2𝜌(𝜔)𝑑𝜔

≤ ‖𝜌‖𝐿𝑡

∑︀𝐽
𝑗=1 ‖∆𝑁𝑘

1/2
𝑗 ‖2𝐿𝑠 (5.3)

≤ 𝑐2𝑟,𝑑‖𝜌‖𝐿𝑡 GMMD2
𝑘1/2,𝑟(𝑄𝑁 , 𝑃 ).

Here, 𝑐𝑟,𝑑 := (𝑟1/𝑟/𝑠1/𝑠)𝑑/2 ≤ 1 and

GMMD2
𝑘1/2,𝑟(𝑄𝑁 , 𝑃 ) :=

∑︀𝐽
𝑗=1‖F

−1∆𝑁𝑘
1/2
𝑗 ‖2𝐿𝑟

is what we term a generalized MMD (GMMD). Indeed, when 𝑟 = 2, the GMMD is
itself an instance of an MMD, and when 𝜌 ≡ 1, GMMD𝑘1/2,2 = MMD𝑘0 .

The only 𝑄𝑁 -dependent term in the bound in Eq. (5.3) is the GMMD term, which
we can approximate using importance sampling under a sampling density 𝜈; we call
the resulting stochastic discrepancy measure a fast GMMD (fGMMD):

fGMMD2
𝑘1/2,𝑟,𝜈,𝑀(𝑄𝑁 , 𝑃 )

:=
𝐽∑︁

𝑗=1

(︃
1

𝑀

𝑀∑︁
𝑚=1

|(F−1∆𝑁𝑘
1/2
𝑗 )(𝑍𝑚)|𝑟

𝜈(𝑍𝑚)

)︃2/𝑟

for 𝑍1, . . . , 𝑍𝑀
i.i.d.∼ 𝜈. Crucially, fGMMDs can be computed in 𝑂(𝑀𝑁) time. We

will show in Section 5.4 that, with appropriate practical choices of 𝑘1/2, 𝑟, and 𝜈, the
fGMMD dominates its reference MMD and GMMD with high probability even when
𝑀 grows sublinearly in 𝑁 . We will occasionally omit the 𝑄𝑁 and 𝑃 arguments to
MMD, GMMD, and fGMMD when they are clear from context.

5.3.1 Special cases

A number of existing MMD approximations and stochastic kernel discrepancies can
be recovered as special cases of fGMMDs. If 𝐽 = 1, 𝑘0(𝑥, 𝑦) = Φ(𝑥− 𝑦),

F−1(𝑘
1/2
1 (𝑥, ·))(𝑧) = 𝑒−𝑖⟨𝑧,𝑥⟩Φ̂(𝑧)1/2,

and 𝜈 ∝ Φ̂, then fGMMD𝑘1/2,2,𝜈,𝑀 is the random Fourier feature (RFF) approximation
to MMD𝑘0 [113]. Chwialkowski et al. [34, Prop. 1] showed that the RFF approxima-
tion can be a poor choice of discrepancy measure, as there exist uncountably many
pairs of distinct distributions that, with high probability, cannot be distinguished by
the RFF approximation.

Chwialkowski et al. [34] introduced two alternative stochastic kernel discrepancies,
based on an arbitrary continuous sampling density 𝜈, to overcome this limitation of
RFFs. Their smooth characteristic function metric can be realized as fGMMD𝑘1/2,2,𝜈,𝑀

with 𝐽 = 1 and F−1(𝑘
1/2
1 (𝑥, ·))(𝑧) = 𝑒−𝑖⟨𝑧,𝑥⟩𝜅̂(𝑥)𝜈(𝑧)1/2 for 𝜅 integrable, analytic, and

positive definite. Their mean embedding metric is recovered by fGMMD𝑘1/2,2,𝜈,𝑀 when
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𝐽 = 1 and F−1(𝑘
1/2
1 (𝑥, ·))(𝑧) = 𝑓(𝑥, 𝑧)𝜈(𝑧)1/2 for 𝑓 a real analytic and characteristic

reproducing kernel. The related random finite set Stein discrepancy [FSSD-rand,
75] is an fGMMD𝑘1/2,2,𝜈,𝑀 with 𝐽 = 𝐷 and, for each 𝑑 ∈ [𝐷], F−1(𝑘

1/2
𝑑 (𝑥, ·))(𝑧) =

𝜕𝑥𝑑 (𝑝(𝑥)𝑓(𝑥,𝑧))

𝑝(𝑥)
𝜈(𝑧)1/2 for 𝑓 a real analytic and 𝐶0-universal [30, Def. 4.1] reproducing

kernel. In each case, the fGMMD construction exposes a relationship to an underlying
MMD𝑘0 with 𝜌 ≡ 1. In the sequel, we will leverage this relationship to establish high-
probability convergence-determining properties – or the lack thereof – for different
classes of fGMMD.

5.4 Theoretical guarantees
In practice, we would like to select an fGMMD that (i) detects when a sample se-
quence is not converging to 𝑃 , (ii) detects when a sample sequence is converging
to 𝑃 , and (iii) maintains subquadratic sample complexity. Our strategy is to first
select a convergence-determining reference MMD and then, for any 𝛾 > 0, choose an
associated fGMMD that satisfies the relative error bound

fGMMD𝑘1/2,𝑟,𝜈,𝑀 ≥ 1
2

GMMD𝑘1/2,𝑟 ≥ 𝐶 ′ MMD𝑘0

with high probability whenever 𝑀 = Ω(𝑁𝛾). This ensures that (with probability
1 by Borel-Cantelli) if fGMMD𝑘1/2,𝑟,𝜈,𝑀(𝑄𝑁 , 𝑃 )

𝑃→ 0 then MMD𝑘0(𝑄𝑁 , 𝑃 ) → 0 and
hence 𝑄𝑁

𝒟
=⇒ 𝑃 . We detail sufficient conditions for these properties to hold in Sec-

tions 5.4.1 and 5.4.2 and explicit examples in Section 5.4.3. In Section 5.4.4 we provide
complementary finite-sample upper bounds on fGMMD𝑘1/2,𝑟,𝜈,𝑀 and GMMD𝑘1/2,𝑟 in
terms of MMD𝑘0 . Finally, in Section 5.4.5 we adopt a hypothesis testing perspective
and derive the asymptotic distribution of 𝑁 fGMMD2 when sample points 𝑥𝑛 are
i.i.d. draws from a distribution 𝑄. This enables us to conduct asymptotically exact
hypothesis tests based on fGMMD in Section 5.5.

5.4.1 Selecting a reference MMD

While many MMDs based on standard 𝐶0 kernel functions exactly metrize weak con-
vergence and hence detect non-convergence [see, e.g., 127, Prop. 71], few KSDs are
known to determine weak convergence on R𝑑. A notable exception is the KSD with
inverse multiquadric (IMQ) base kernel 𝑘(𝑥, 𝑦) = ΨIMQ

𝑐,𝛽 (𝑥 − 𝑦) := (𝑐2 + ‖𝑥− 𝑦‖22)𝛽
for 𝑐 > 0 and 𝛽 ∈ (−1, 0). Gorham and Mackey [61, Thm. 8] proved that these
IMQ KSDs determine weak convergence on R𝑑 whenever 𝑃 ∈ 𝒫 , the set of distantly
dissipative distributions with Lipschitz ∇ log 𝑝. We say 𝑃 satisfies distant dissipativ-
ity [46, 62] if 𝜅0 := lim inf𝑟→∞ 𝜅(𝑟) > 0 for

𝜅(𝑟) = inf{−2 ⟨∇ log 𝑝(𝑥)−∇ log 𝑝(𝑦),𝑥−𝑦⟩
‖𝑥−𝑦‖22

: ‖𝑥− 𝑦‖2 = 𝑟}.

An IMQ KSD will serve as the convergence-determining reference MMD for our 𝐿𝑟

IMQ fGMMDs developed in Example 5.4.2.
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Our next result, proved in Appendix D.1, shows that tilted base kernels of the
form 𝐴(𝑥)Φ(𝑥− 𝑦)𝐴(𝑦) also determine convergence to 𝒫 .

Theorem 5.4.1 (Tilted KSDs determine convergence). Suppose that 𝑃 ∈ 𝒫 and
that 𝑘(𝑥, 𝑦) = 𝐴(𝑥)Φ(𝑥 − 𝑦)𝐴(𝑦) for Φ ∈ 𝐶2 with 𝐹 (𝑢) = sup𝜔∈R𝑑 𝑒−‖𝜔‖22/(2𝑢2)/Φ̂(𝜔)
finite for all 𝑢 > 0 and 𝐴 ∈ 𝐶1 with 𝐴 > 0, 1/𝐴 ∈ 𝐿2, and bounded-Lipschitz
∇ log𝐴. Then, for any sequence of probability measures (𝜇𝑛)∞𝑛=1, 𝜇𝑛

𝒟
=⇒ 𝑃 whenever

KSD𝑘(𝜇𝑛, 𝑃 )→ 0.

Theorem 5.4.1 motivates the new convergence-determining tilted hyperbolic secant
kernels introduced in Example 5.4.1.

5.4.2 Relative error bounds

We next turn to developing high-probability relative error bounds for fGMMDs with
sub-quadratic sample complexity. Our strategy is to show that the second moment of
each fGMMD feature, 𝑤𝑗(𝑍,∆𝑁) := |(F−1∆𝑁𝑘

1/2
𝑗 )(𝑍)|𝑟/𝜈(𝑍), is bounded by a power

of its mean:

Definition 5.4.2 ((𝐶, 𝛾) second moments). Fix a target distribution 𝑃 and a family
of distributions 𝒬. For 𝑍 ∼ 𝜈 and 𝑗 ∈ [𝐽 ], let 𝑌𝑗 := 𝑤𝑗(𝑍,∆𝑁). If for some 𝐶 > 0
and 𝛾 ∈ [0, 2], for all 𝑄𝑁 ∈ 𝒬,

E[𝑌 2
𝑗 ] ≤ 𝐶E[𝑌𝑗]

2−𝛾,

then we say (𝑘1/2, 𝑟, 𝜈) yields (𝐶, 𝛾) second moments for 𝑃 and 𝒬.

The next proposition, proved in Appendix D.2, demonstrates the value of this
second moment property.

Proposition 5.4.3. If (𝑘1/2, 𝑟, 𝜈) yields (𝐶, 𝛾) second moments for 𝑃 and 𝒬 and
𝑀 ≥ 2𝐶E[𝑌𝑗]

−𝛾 log(𝐽/𝛿)/𝜖2 for all 𝑗 ∈ [𝐽 ], then, for any 𝑄𝑁 ∈ 𝒬, with probability at
least 1− 𝛿,

fGMMD𝑘1/2,𝑟,𝜈,𝑀 ≥ (1− 𝜖)1/𝑟 GMMD𝑘1/2,𝑟 .

When ‖𝜌‖𝐿𝑠 < ∞ and MMD2
𝑘0

(𝑄𝑁 , 𝑃 ) = Ω(𝑁−1), Proposition 5.4.3 and the
MMD-GMMD inequality Eq. (5.3) imply that a (𝐶, 𝛾) fGMMD dominates its refer-
ence MMD with high probability whenever the importance sample size𝑀 = Ω(𝑁𝛾 𝑟/2).
Note that MMD2

𝑘0
(𝑄𝑁 , 𝑃 ) = Ω𝑃 (𝑁−1) whenever the sample points 𝑥1, . . . , 𝑥𝑁 are

drawn i.i.d. from a distribution 𝑄, since the scaled V-statistic 𝑁 MMD2
𝑘0

(𝑄𝑁 , 𝑃 ) di-
verges when 𝑄 ̸= 𝑃 and converges in distribution to a non-zero limit when 𝑄 = 𝑃
[124, Thm. 32]. Moreover, working in a hypothesis testing framework of shrinking
alternatives, Gretton et al. [63, Thm. 13] showed that MMD2

𝑘0
(𝑄,𝑃 ) = Θ(𝑁−1) was

the smallest local departure distinguishable by an asymptotic MMD test.
We next turn to establishing practical sufficient conditions that imply (𝐶, 𝛾) second

moments. Notably, any improvements on these second moment bounds translate
directly into improved sample complexity bounds for fGMMDs.
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Our first result, proved in Appendix D.3, yields (𝐶, 1) moments whenever functions
𝑤𝑗(𝑧,𝑄𝑁) are bounded. Let 𝒬(𝑘1/2, 𝜈, 𝐶 ′) := {𝑄𝑁 | sup𝑧,𝑗 𝑤𝑗(𝑧,𝑄𝑁) < 𝐶 ′}.

Proposition 5.4.4. Fix any 𝐶 ′ > 0. If sup𝑧,𝑗 𝑤𝑗(𝑧, 𝑃 ) < ∞, then for some 𝐶 > 0,
(𝑘1/2, 𝑟, 𝜈) yields (𝐶, 1) second moments for 𝑃 and 𝒬(𝑘1/2, 𝜈, 𝐶 ′).

A more refined analysis provides sufficient conditions for (𝐶, 𝛾) second moments
for any 𝛾 > 0. The key condition is a structural assumption about 𝑘1/2𝑗 :

Assumption 5.F. For all 𝑗 ∈ [𝐽 ], 𝑘1/2𝑗 (𝑥, 𝜔) = F(𝒪𝑗,𝑥𝑓𝑗(𝑥− ·))(𝜔), where 𝒪𝑗,𝑥 is a
linear operator and 𝑓𝑗 is a symmetric function.

Let

𝑘𝑗(𝑥, 𝑦) :=

∫︁
𝑘
1/2
𝑗 (𝑥, 𝜔)𝑘

1/2
𝑗 (𝑦, 𝜔)𝜌(𝜔) d𝜔,

so if 𝑘0 is of the form Eq. (5.2), 𝑘0 =
∑︀𝐽

𝑗=1 𝑘𝑗. As shown in Appendix D.4, Assump-
tion 5.F leads to a convenient rewriting of the kernel components 𝑘𝑗 in terms of the
linear operators acting on a stationary kernel:

Proposition 5.4.5. Under Assumption 5.F,

𝑘𝑗(𝑥, 𝑦) = 𝒪𝑗,𝑥𝒪𝑗,𝑦Φ𝑗(𝑥− 𝑦),

where Φ̂𝑗 := ̂︀𝑓𝑗2𝜌. Hence

(∆𝑁 ×∆𝑁)𝑘0 =
∑︀𝐽

𝑗=1

⃦⃦∫︀
𝒪𝑗,𝑥Φ𝑗(𝑥− ·)∆𝑁(d𝑥)

⃦⃦2
Φ𝑗
.

We also require two additional conditions, which concern how 𝑓𝑗 relates to Φ̂𝑗 and
𝜈 relates to 𝑓𝑗. Specifically, 𝑓𝑗 must be sufficiently smooth:

Assumption 5.G. There exists a smoothness parameter 𝜆 ∈ (1/2, 1] such that if
𝜆 ∈ (1/2, 𝜆), then ̂︀𝑓𝑗/Φ̂𝜆/2

𝑗 ∈ 𝐿2.

Requiring that ̂︀𝑓𝑗/Φ̂𝜆/2
𝑗 ∈ 𝐿2 is equivalent to requiring that 𝑓𝑗 belong to the repro-

ducing kernel Hilbert space 𝒦𝜆 induced by the kernel F−1(Φ̂𝜆
𝑗 ). The smoothness of

the functions in 𝒦𝜆 increases as 𝜆 increases. Hence 𝜆 quantifies the smoothness of 𝑓𝑗
relative to Φ𝑗.

The importance distribution 𝜈 must also be heavy-tailed relative to 𝑓𝑗:

Assumption 5.H. There exists a tail parameter 𝜉 ∈ (0, 1) such that for 𝑗 ∈ [𝐽 ],
𝜈−1 ≤ 𝐶𝜈,𝑗𝑓

−𝜉𝑟
𝑗 for some 𝐶𝜈,𝑗 > 0.

Assumption 5.H results in over-dispersed features relative to 𝑓𝑗, which ensures that
regions of mismatch between 𝑃 and 𝑄𝑁 are picked up by the fGMMD. In addition
to Assumptions 5.F, 5.G and 5.H, our result (proved in Appendix D.5) relies on
several other regularity conditions. The statement of these conditions is deferred to
Appendix D.5.
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Theorem 5.4.6. Assume that 𝑃 ∈ 𝒫 and that Assumptions 5.F, 5.G, 5.H, E.14,
E.15 and E.16 hold. Let 𝒬(𝑏, 𝐶𝐵,𝑗, 𝐶𝒪,𝑗) denote the family of distributions for which
Assumptions E.17 and E.18 hold for some uniform choice of the constants 𝑏, 𝐶𝐵,𝑗,
and 𝐶𝒪,𝑗. For 𝛼 > 2(1− 𝜆), let 𝛾𝛼 := 𝛼+ (2− 𝛼)𝜉/(2− 𝑏− 𝜉). Then for a constant
𝐶𝛼 > 0, (𝑘1/2, 𝑟, 𝜈) yields (𝐶𝛼, 𝛾𝛼) second moments for 𝑃 and 𝒬(𝑏, 𝐶𝐵,𝑗, 𝐶𝒪,𝑗).

Theorem 5.4.6 suggests a strategy for improving the importance sample growth
rate 𝛾 of an fGMMD: increase the smoothness 𝜆 of 𝑓𝑗 and decrease the tail parameter
𝜉 to increase the over-dispersion of 𝜈 relative to 𝑓𝑗.

5.4.3 Explicit examples

The results of Sections 5.4.1 and 5.4.2 allow us to develop explicit convergence-
determining fGMMDs with (𝐶, 𝛾) second moments for any 𝛾 > 0. We give two
examples, corresponding to the fGMMDs used in our experiments. In each example,
we first fix target smoothness and tail parameters 𝜆 and 𝜉; these define a range of
achievable importance sample growth rates 𝛾 via Theorem 5.4.6. We next introduce
a convergence-determining reference KSD with Stein kernel Eq. (5.1) written in the
canonical form Eq. (5.2); together with a choice of 𝑟, the decomposition into 𝑘1/2

and 𝜌 fully determines the associated GMMD. Finally, we prove both that the as-
sumptions of Theorem 5.4.6 are met when all the 𝑓𝑗 are chosen equal and 𝜈 ∝ 𝑓 𝜉𝑟

1 ,
guaranteeing (𝐶, 𝛾) second moments, and that 𝜌 = Φ̂1/̂︀𝑓12 has bounded 𝐿𝑡 norm,
guaranteeing that the GMMD upper bounds the KSD by Eq. (5.3).

Example 5.4.1 (𝐿2 tilted sech fGMMD). Take 𝜆 = 1, fix any 𝜉 ∈ (0, 1), and choose
an inverse scale parameter 𝑎 > 0. Recall that the hyperbolic secant (sech) func-
tion is given by sech(𝑢) = 2

𝑒𝑢+𝑒−𝑢 . For 𝑥 ∈ R𝐷, define the sech kernel Φsech
𝑎 (𝑥) :=∏︀𝐷

𝑑=1 sech
(︀√︀

𝜋
2
𝑎𝑥𝑑
)︀
.

Consider a reference KSD with tilted sech base kernel 𝑘(𝑥, 𝑦) = 𝐴(𝑥)Φsech
𝑎 (𝑥 −

𝑦)𝐴(𝑦), where 𝐴 is any positive, differentiable function. The induced Stein kernel
𝑘0 from Eq. (5.1) has canonical form Eq. (5.2) with 𝐽 = 𝐷 and, for each 𝑗 ∈ [𝐽 ],
𝑓𝑗 = Φsech

2𝑎 , 𝑘1/2𝑗 (𝑥, 𝜔) = F(𝒯𝑗,𝑥𝐴(𝑥)𝑓𝑗(𝑥− ·))(𝜔), and 𝜌 = (Φ̂sech
2𝑎 )2/̂︀𝑓𝑗2 = 1. As shown

in Appendix D.9, with the choice of 𝑟 = 2 and 𝜈(𝑧) ∝ Φsech
2𝑎 (𝑧)2𝜉, the resulting 𝐿2

IMQ fGMMD meets all of our relative error criteria.

Theorem 5.4.7 (𝐿2 tilted sech fGMMD properties). Under the settings of Exam-
ple 5.4.1, let 𝒬sech(𝐶) denote the family of distributions for which

𝑄𝑁((1 + ‖·‖1)𝐴(·)𝑒
√

𝜋
2
𝑎‖·‖1) ≤ 𝐶.

Assume that 𝑃 ∈ 𝒫 and that for some constants 𝐶1, . . . , 𝐶4 ≥ 0,

‖∇ log 𝑝(𝑥)‖1 ≤ 𝐶1 + 𝐶2‖𝑥‖1 and
‖∇ log𝐴(𝑥)‖1 ≤ 𝐶3 + 𝐶4‖𝑥‖1.
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(a) Efficiency of L1 IMQ (b) Efficiency of L2 SechExp (c) 𝑀 needed for stdev(fGMMD)
GMMD < 1

2

Figure 5-1: Efficiency of fGMMDs. The L1 IMQ fGMMD displays exceptional effi-
ciency.

Then, in the notation of Theorem 5.4.6, for any 𝑏 > 0, (𝑘1/2, 𝑟, 𝜈) yields (𝐶𝛼, 𝛾𝛼)
second moments for 𝑃 and 𝒬sech(𝐶). Moreover, MMD2

𝑘0
= GMMD2

𝑘1/2,2 .

Example 5.4.2 (𝐿𝑟 IMQ fGMMD). Fix any 𝜆 ∈ (1/2, 1), 𝜉 ∈ (0, 1/2), and 𝜉 ∈ (𝜉, 1).
Consider a reference KSD with IMQ base kernel 𝑘(𝑥, 𝑦) = ΨIMQ

𝑐,𝛽 (𝑥 − 𝑦) with 𝑐 > 0

and 𝛽 ∈ [−𝐷/2, 0). For 𝑐′ = 𝜆𝑐/2 and any 𝛽′ ∈ [−𝐷/(2𝜉),−𝛽/(2𝜉) − 𝐷/(2𝜉)), the
induced Stein kernel 𝑘0 from Eq. (5.1) has canonical form Eq. (5.2) with 𝐽 = 𝐷, and,
for each 𝑗 ∈ [𝐽 ], 𝑓𝑗 = ΨIMQ

𝑐′,𝛽′ , 𝑘1/2𝑗 (𝑥, 𝜔) = F(𝒯𝑗,𝑥𝑓𝑗(𝑥 − ·))(𝜔), and 𝜌 = Ψ̂IMQ
𝑐,𝛽 /̂︀𝑓𝑗2. As

shown in Appendix D.10, with the choice of 𝑟 = −𝐷/(2𝛽′𝜉) and 𝜈(𝑧) ∝ ΨIMQ
𝑐′,𝛽′ (𝑧)𝜉𝑟,

the resulting 𝐿𝑟 IMQ fGMMD meets all of our relative error criteria.

Theorem 5.4.8 (𝐿𝑟 IMQ fGMMD properties). Under the settings of Example 5.4.2,
let 𝒬IMQ(𝐶) denote the family of distributions for which

𝑄𝑁(‖·‖1−2𝛽′

2 ) ≤ 𝐶.

Assume that 𝑃 ∈ 𝒫 and that for some constants 𝐶1, 𝐶2 ≥ 0,

‖∇ log 𝑝(𝑥)‖2 ≤ 𝐶1 + 𝐶2‖𝑥‖2.

Then, in the notation of Theorem 5.4.6, for 𝑏 = 0, (𝑘1/2, 𝑟, 𝜈) yields (𝐶𝛼, 𝛾𝛼) second
moments for 𝑃 and 𝒬IMQ(𝐶). Moreover, there exists a constant 𝐶 ′ > 0 such that for
any 𝑄𝑁

MMD2
𝑘0

(𝑄𝑁 , 𝑃 ) ≤ 𝐶 ′ GMMD2
𝑘1/2,𝑟(𝑄𝑁 , 𝑃 ).

A particularly simple setting is given by 𝛽′ = −𝐷/(2𝜉) which yields 𝑟 = 1.

5.4.4 Upper bounds on the GMMD and fGMMD

While it is most important that the GMMD and fGMMD upper bound a reference
MMD, it is also worthwhile to verify that as 𝑄𝑁 → 𝑃 , GMMD and fGMMD → 0.
We accomplish this by upper bounding the GMMD and fGMMD by the reference
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Figure 5-2: Speed of fGMMDs using 𝑀 = 10 importance samples compared to
the IMQ KSD. All data had dimension 𝐷 = 10. Even for moderate dataset sizes,
fGMMDs are orders of magnitude faster than the KSD.

MMD. We obtain these upper bounds under a subset of the assumptions required by
Theorem 5.4.6.

Theorem 5.4.9. Assume that
∫︀
B‖·‖(𝑅){

𝑓𝑗(𝑧)𝑟(1−𝑏)d𝑧 < 𝐺(𝑅) for a decreasing function
𝐺 and that Assumptions 5.F, 5.G and E.15 hold. Let 𝑉 (𝑅) := vol(B‖·‖(𝑅)) and
𝑊 (𝑅) := 𝐺(𝑅)/𝑉 (𝑅). Then for any 𝜆 ∈ (1/2, 𝜆) there exists a 𝐶,𝐶 ′ > 0 such that

GMMD2
𝑘1/2,𝑟 ≤ 𝐶

∑︀𝐽
𝑗=1𝐺

(︁
𝑊−1

(︀
𝐶 ′ MMD

𝑟(2𝜆−1)
𝑘𝑗

)︀)︁2/𝑟
.

Theorem 5.4.10. Assume that Assumptions 5.F, 5.G and E.18 hold. Then for any
𝜆 ∈ (1/2, 𝜆) there exists a 𝐶 > 0 such that

fGMMD2
𝑘1/2,𝑟,𝜈,𝑀 ≤ 𝑐(𝜈, 𝑍1:𝑀)2/𝑟

∑︀𝐽
𝑗=1 MMD4𝜆−2

𝑘𝑗
,

where 𝑐(𝜈, 𝑍1:𝑀) := 𝐶𝑀−1
∑︀𝑀

𝑚=1 𝜈(𝑍𝑚)−1.

The proofs of these upper bound are in, respectively, Appendices D.7 and D.8.

5.4.5 Asymptotics

Recall that in goodness-of-fit testing we have an empirical distribution

𝑄𝑁 = 𝑁−1

𝑁∑︁
𝑛=1

𝛿𝑋𝑛 ,

where 𝑋𝑛
i.i.d.∼ 𝑄. We wish to determine whether the null hypothesis 𝐻0 : 𝑃 =

𝑄 or alternative hypothesis 𝐻1 : 𝑃 ̸= 𝑄 holds. In order to do so, we need to
estimate the distribution of the statistic 𝐹𝑟,𝑁 := fGMMD2

𝑘1/2,𝑟,𝜈,𝑀(𝑄𝑁 , 𝑃 ) under the
null hypothesis, where we treat as fixed the features 𝑍1, . . . , 𝑍𝑀

i.i.d.∼ 𝜈 used to construct
the fGMMD. We would also like to verify that, at a minimum, the power of the test

approaches 1 as 𝑁 → ∞. For 𝑟 ∈ [1, 2], let 𝜉𝑟,𝑚𝑗(𝑥) :=
(F−1(𝛿𝑥−𝑃 )𝑘

1/2
𝑗 )(𝑍𝑚)

(𝑀𝜈(𝑍𝑚))1/𝑟
, where
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𝑍𝑚
i.i.d.∼ 𝜈. Hence 𝜉𝑟(𝑥) ∈ R𝑀𝐽 . The following result, proved in Appendix D.11,

furnishes the necessary information.

Theorem 5.4.11 (Asymptotic distribution of fGMMD). Let Σ𝑟 := Cov𝑃 (𝜉𝑟), which
we assume to be finite. Then, under any realization of 𝑍𝑚

i.i.d.∼ 𝜈, the following holds.

1. Under 𝐻0 : 𝑃 = 𝑄,

𝑁𝐹𝑟,𝑁
𝒟

=⇒
∑︀𝐽

𝑗=1(
∑︀𝑀

𝑚=1 |𝜁𝑚𝑗|𝑟)2/𝑟

as 𝑁 →∞, where 𝜁 ∼ N(0,Σ𝑟).

2. Under 𝐻1 : 𝑃 ̸= 𝑄, 𝑁𝐹𝑟,𝑁 →∞ as 𝑁 →∞.

The next result provides a roadmap for using fGMMD for hypothesis testing and
is similar in spirit to [75, Theorem 3].

Theorem 5.4.12 (Goodness of fit testing with fGMMD). Let 𝜇̂ := 𝑁−1
∑︀𝑁

𝑛=1 𝜉𝑟(𝑋
′
𝑛)

and Σ̂ := 𝑁−1
∑︀𝑁

𝑛=1 𝜉𝑟(𝑋
′
𝑛)𝜉𝑟(𝑋

′
𝑛)⊤−𝜇̂𝜇̂⊤ with either 𝑋 ′

𝑛 = 𝑋𝑛 or 𝑋 ′
𝑛

i.i.d.∼ 𝑃 . Suppose
for the test 𝑁𝐹𝑟,𝑁 , the test threshold 𝜏𝛼 is set to the (1 − 𝛼)-quantile of the distri-

bution of
∑︀𝐽

𝑗=1

(︁∑︀𝑀
𝑚=1|𝜁𝑗𝑚|

𝑟
)︁2/𝑟

, where 𝜁 ∼ N(0, Σ̂). Then, under 𝐻0 : 𝑃 = 𝑄,
asymptotically the false positive rate is 𝛼. Under 𝐻1 : 𝑃 ̸= 𝑄, the test power
P𝐻1(𝑁𝑇𝑝,𝑁 > 𝜏𝛼)→ 1 as 𝑁 →∞.

5.5 Experiments
We now investigate the importance-sample and computational efficiency of our pro-
posed fGMMDs and evaluate their benefits in MCMC hyperparameter selection and
goodness-of-fit testing. We consider the fGMMDs described in Examples 5.4.1 and 5.4.2:
the tilted sech kernel using 𝑟 = 2 and 𝐴(𝑥) =

∏︀𝐷
𝑑=1 𝑒

𝑎′
√

1+𝑥2
𝑑 (L2 SechExp) and the

inverse multiquadric kernel using 𝑟 = 1 (L1 IMQ). We select kernel parameters as
follows. First we choose 𝛾 and then select 𝜆, 𝛼, and 𝜉 so that according to the theory
from Section 5.4.2, (𝑘1/2, 𝑟, 𝜈) yields (𝐶, 𝛾) second moments. In particular, we choose
𝜆 = 𝛾/4, 𝛼 = 𝛾/3, and 𝜉 = 𝛾/2. Except for the importance sample efficiency experi-
ments, where we vary 𝛾 explicitly, all experiments use 𝛾 = 1/4. Let ̂︂med𝑢 denote the
estimated median of the distance between data points under the 𝑢-norm, where the
estimate is based on using a small subsample of the full dataset. For L2 SechExp, we
take 𝑎−1 =

√
2𝜋 ̂︂med1, except in the sample quality experiments where 𝑎−1 =

√
2𝜋 .

For L1 IMQ, we take 𝛽 = −1/2 and 𝑐 =
√

2𝐷 ̂︂med2, except in the sample quality
experiments where 𝑐 = 1.

5.5.1 Import sample-efficiency experiments

To validate the importance sample-efficiency theory from Sections 5.4.2 and 5.4.3, we
calculated P[fGMMD > GMMD/4] as the importance sample size 𝑀 was increased.

73



10 5 10 4 10 3 10 2
10 2

10 1

100

m
is

m
at

ch
 m

ea
su

re

M = 10

10 5 10 4 10 3 10 2

10 1

100

m
is

m
at

ch
 m

ea
su

re

M = 25

10 5 10 4 10 3 10 2

10 1

100

m
is

m
at

ch
 m

ea
su

re

M = 75
L2 SechExp
L1 IMQ
IMQ KSD

(a) Step size selection using KSDs and fGMMDs. Dotted lines are divergence measures of
the high-quality samples. Both fGMMDs quickly converge to select step sizes consistent
with the IMQ KSD.
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(b) SGLD sample points with equidensity contours of 𝑝 overlaid. All quality measure selected
a step size of 𝜀 = .01 or .005. The samples produced by SGLD with these step sizes are
noticeably better than those produced using smaller or large step sizes.

Figure 5-3: Using fGMMDs for measuring sample quality

We considered choices of the parameters for L2 SechExp and L1 IMQ that produced
(𝐶𝛾, 𝛾) second moments for varying choices of 𝛾. The results, shown in Figs. 5-1a
and 5-1b, indicate greater sample efficiency for L1 IMQ than L2 SechExp. L1 IMQ is
also more robust to the choice of 𝛾. Fig. 5-1c, which plots the values of 𝑀 necessary
to for stdev(fGMMD)

GMMD
< 1

2
, corroborates the greater sample efficiency of L1 IMQ.

5.5.2 Computational complexity experiment

We compared the computational complexity of the fGMMDs (with 𝑀 = 10) to that
of the IMQ KSD. We generated datasets of dimension 𝐷 = 10 with the sample size
𝑁 ranging from 500 to 5000. Even for moderate dataset sizes, the fGMMDs could be
computed orders of magnitude faster than the KSD.
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(a) Gaussian vs. Laplace.
𝑛 = 1000, variance = 1

(b) Gaussian vs. Student’s t.
𝑛 = 2000, Student’s t has df = 5

Figure 5-4: Power of fGMMD, FSSD, and KSD goodness-of-fit tests. Both fGMMDs
offer competitive performance.

Figure 5-5: Size of fGMMD and FSSD goodness-of-fit tests for Gaussian null with
𝑛 = 1000. All tests were close to calibrated.

5.5.3 Approximate MCMC hyperparameter selection

We follow the stochastic gradient Langevin dynamics [SGLD, 142] hyperparameter
selection setup from Gorham and Mackey [60, Section 5.3]. SGLD with constant
step size 𝜀 is a biased MCMC algorithm that approximates the overdamped Langevin
diffusion. No Metropolis-Hastings correction is used and an unbiased estimate of
the score function from a data subsample is calculated at each iteration. There is a
bias-variance tradeoff in the choice of step size parameter: the stationary distribution
of SGLD deviates more from its target as 𝜀 grows, but as 𝜀 gets smaller the mixing
speed of SGLD decreases. Hence, an appropriate choice of 𝜀 is critical for accurate
posterior inference. We target the bimodal Gaussian mixture model (GMM) posterior
of Welling and Teh [142] and compare the step size selection made by the two fGMMDs
to that of IMQ KSD [61]. Fig. 5-3a shows that L2 SechExp agrees with IMQ KSD
even with just 𝑀 = 10 importance samples while L1 IMQ is in agreement once
𝑀 = 25, with all three measures settling on 𝜀 = .005. Fig. 5-3b compares the choice
of 𝜀 = .005 to smaller and larger values of 𝜀.
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5.5.4 Goodness-of-fit testing

Finally, we investigate the performance fGMMDs for goodness-of-fit testing. In all
of our experiments we used a standard Gaussian 𝑝(𝑥) = N(𝑥 | 0, 𝐼) as the null distri-
bution while varying the dimension of the data. We explored the power of fGMMD-
based tests compared to FSSD [75] and KSD-based tests [35, 61, 86]. There are
two types of FSSD tests: FSSD-rand used random sample locations and fixed hy-
perparameters while FSSD-opt uses a small subset of the data to optimize sam-
ple locations and hyperparameters for a power criterion. Our first experiment used
𝑞(𝑥) =

∏︀𝐷
𝑑=1 Lap(𝑥𝑑|0, 1/

√
2 ), a product of Laplace distributions (see Fig. 5-4a). Our

second experiment used 𝑞(𝑥) = T(𝑥|0, 5), a standard multivariate Student’s t distri-
bution with 5 degrees of freedom (see Fig. 5-4b). The L1 IMQ test performed better
as the dimension increased, with power near 1 once the dimension reached 10 in both
experiments. This is an intriguing empirical finding that we cannot fully explain. The
L2 SechExp test outperformed FSSD (both randomized and optimized versions in the
Student’s t case). Only the quadratic-time IMQ KSD and L1 IMQ outperformed L2
SechExp on the Laplace experiment while the two KSDs and L1 IMQ were superior
on the Student’s t experiment. We also verified the size of the FSSD and fGMMD-
based tests (see Fig. 5-5). All tests were close to calibrated despite using asymptotic
null distributions.

5.6 Discussion and related work

We have introduced a new family of kernel-based discrepancy measures – GMMDs –
designed to upper bound a target MMD. Using importance sampling, we estimate the
GMMD and call the resulting estimator an fGMMD. The multiplicative error bounds
we develop for fGMMDs only require the number of importance samples 𝑀 to grow
sublinearly in 𝑁 , which implies that the computational complexity of fGMMDs is
subquadratic in 𝑁 . We validated our approach on two applications where kernel
Stein discrepancies have shown excellent performance: measuring sample quality and
goodness-of-fit testing. Empirically, the L1 IMQ fGMMD performed particularly well:
it was superior to existing “linear-time” KSD approximations and typically performed
as well or better than the state-of-the-art quadratic-time KSDs.

While we focused on Stein kernels with the Langevin Stein operator developed
in [60, 105], our analyses extend readily to KSDs based on the diffusion Stein op-
erators of Gorham et al. [62]. fGMMDs can also be used as drop-in replacements
in other applications featuring expensive MMD computations including two-sample
testing [34, 63], Monte Carlo variance reduction with control functionals [105], and
probabilistic inference using Stein variational gradient descent [85]. fGMMDs could
also be useful in the context of kernel quadrature [see, e.g., 9, 25], where one aims
to approximate the expectation of target functions (in a weighted 𝐿𝑝 norm sense)
instead of approximating an MMD. For example, Bach [9] studies approximations
to target functions in reproducing kernel Hilbert spaces but does not consider the
function classes associated with more general GMMDs. An interesting direction for
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future work would be the development of asymptotically consistent power estimates
for fGMMD-based goodness-of-fit tests.
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Appendix A

Chapter 2 Proofs

A.1 Marginal Likelihood Approximation
Proof By the assumption that ℒ and ℒ̃ are non-positive, the multiplicative error
assumption, and Jensen’s inequality,

ℰ̃ =

∫︁
𝑒ℒ̃(𝜃)𝜋0(𝜃) d𝜃 ≥

∫︁
𝑒(1+𝜀)ℒ(𝜃)𝜋0(𝜃) d𝜃 ≥

(︂∫︁
𝑒ℒ(𝜃)𝜋0(𝜃) d𝜃

)︂1+𝜀

= ℰ1+𝜀

and

ℰ̃ =

∫︁
𝑒ℒ̃(𝜃)𝜋0(𝜃) d𝜃 ≤

∫︁
𝑒(1−𝜀)ℒ(𝜃)𝜋0(𝜃) d𝜃 ≤

(︂∫︁
𝑒ℒ(𝜃)𝜋0(𝜃) d𝜃

)︂1−𝜀

= ℰ1−𝜀.

A.2 Main Results
In order to construct coresets for logistic regression, we will use the framework de-
veloped by Feldman and Langberg [50]. For 𝑛 ∈ [𝑁 ] := {1, . . . , 𝑁}, let 𝑓𝑛 : 𝒮 → R+

be a non-negative function from some set 𝒮 and let 𝑓 = 1
𝑁

∑︀𝑁
𝑛=1 𝑓𝑛 be the average of

the functions. Define the sensitivity of 𝑛 ∈ [𝑁 ] with respect to 𝒮 by

𝜎𝑛(𝒮) := sup
𝑠∈𝑆

𝑓𝑛(𝑠)

𝑓(𝑠)
,

and note that 𝜎𝑛(𝒮) ≤ 𝑁 . Also, for the set ℱ := {𝑓𝑛 |𝑛 ∈ [𝑁 ]}, define the dimension
dim(ℱ) of ℱ to be the minimum integer ℎ such that

∀𝐹 ⊆ ℱ , |{𝐹 ∩𝑅 |𝑅 ∈ ranges(ℱ)}| ≤ (|𝐹 |+ 1)ℎ,

where ranges(ℱ) := {range(𝑠, 𝑎)|𝑠 ∈ 𝒮, 𝑎 ≥ 0} and range(𝑠, 𝑎) := {𝑓 ∈ ℱ | 𝑓(𝑠) ≤
𝑎}.
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We make use of the following:

Theorem A.2.1 (Bachem et al. [11], Braverman et al. [24], Feldman and Langberg
[50]). Fix 𝜀 > 0. For 𝑛 ∈ [𝑁 ], let 𝑚𝑛 ∈ R+ be chosen such that

𝑚𝑛 ≥ 𝜎𝑛(𝒮)

and let 𝑚̄𝑁 := 1
𝑁

∑︀𝑁
𝑛=1𝑚𝑛. There is a universal constant 𝑐 such that if 𝒞 is a sample

from ℱ of size

|𝒞| ≥ 𝑐 𝑚̄2
𝑁

𝜀2
(dim(ℱ) + ln(1/𝛿)),

such that the probability that each element of 𝒞 is selected independently from ℱ with
probability 𝑚𝑛

𝑁𝑚̄𝑁
that 𝑓𝑛 is chosen, then with probability at least 1− 𝛿, for all 𝑠 ∈ 𝒮,⃒⃒⃒⃒

𝑓(𝑠)− 𝑚̄𝑁

|𝒞|
∑︀

𝑓∈𝒞
𝑓(𝑠)

𝑚𝑛

⃒⃒⃒⃒
≤ 𝜀𝑓(𝑠).

The set 𝒞 in the theorem is called a coreset. In our application to logistic regres-
sion, 𝒮 = Θ and 𝑓𝑛(𝜃) = − ln 𝑝(𝑦𝑛 |x𝑛,𝜃). The key is to determine dim(ℱ) and to
construct the values 𝑚𝑛 efficiently. Furthermore, it is necessary for 𝑚̄𝑁 = 𝑜(

√
𝑁 ) at

a minimum and preferable for 𝑚̄𝑁 = 𝑂(1).
Letting z𝑛 = 𝑦𝑛x𝑛 and 𝜑(𝑠) = ln(1 + exp(−𝑠)), we can rewrite 𝑓𝑛(𝜃) = 𝜑(z𝑛 · 𝜃).

Hence, the goal is to find an upper bound

𝑚𝑛 ≥ 𝜎𝑛(Θ) = sup
𝜃∈Θ

𝑁 𝜑(z𝑛 · 𝜃)∑︀𝑁
𝑛′=1 𝜑(z𝑛′ · 𝜃)

.

To obtain an upper bound on the sensitivity, we will take Θ = B𝑅 for some 𝑅 > 0.

Lemma A.2.2. For all 𝑎, 𝑏 ∈ R, 𝜑(𝑎)/𝜑(𝑏) ≤ 𝑒|𝑎−𝑏|.

Proof The lemma is trivial when 𝑎 = 𝑏. Let ∆ = 𝑏− 𝑎 ̸= 0 and 𝜌(𝑎) = 𝜑(𝑎)/𝜑(𝑎+
∆). We have

𝜌′(𝑎) =
(1 + 𝑒𝑎) log(1 + 𝑒−𝑎)− (1 + 𝑒𝑎+Δ) log(1 + 𝑒−𝑎−Δ)

(1 + 𝑒𝑎)(1 + 𝑒𝑎+Δ) log2(1 + 𝑒−𝑎−Δ)
.

Examining the previous display we see that sgn(𝜌′(𝑎)) = sgn(∆). Hence if ∆ > 0,

sup
𝑎

𝜑(𝑎)

𝜑(𝑎+ ∆)
= lim

𝑎→∞

𝜑(𝑎)

𝜑(𝑎+ ∆)

= lim
𝑎→∞

𝜑′(𝑎)

𝜑′(𝑎+ ∆)

= lim
𝑎→∞

𝑒−𝑎

1 + 𝑒−𝑎

1 + 𝑒−𝑎−Δ

𝑒−𝑎−Δ

= 𝑒Δ = 𝑒|𝑏−𝑎|,
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where the second equality follows from L’Hospital’s rule. Similarly, if ∆ < 0,

sup
𝑎

𝜑(𝑎)

𝜑(𝑎+ ∆)
= lim

𝑎→−∞

𝑒−𝑎

1 + 𝑒−𝑎

1 + 𝑒−𝑎−Δ

𝑒−𝑎−Δ

= lim
𝑎→−∞

𝑒Δ
𝑒−𝑎

𝑒−𝑎−Δ

= 1 ≤ 𝑒|𝑏−𝑎|,

where in this case we have used L’Hospital’s rule twice.

Lemma A.2.3. The function 𝜑(𝑠) is convex.

Proof A straightforward calculation shows that 𝜑′′(𝑠) = 𝑒𝑠

(1+𝑒𝑠)2
> 0.

Lemma A.2.4. For a random vector Z ∈ R𝑑 with finite mean Z̄ = E[Z] and a fixed
vectors V,𝜃* ∈ R𝑑,

inf
𝜃∈B𝑅

E
[︂
𝜑(Z · (𝜃 + 𝜃*))

𝜑(V · (𝜃 + 𝜃*))

]︂
≥ 𝑒−𝑅‖Z̄−V‖2−|(Z̄−V)·𝜃*|.

Proof Using Lemmas A.2.2 and A.2.3, Jensen’s inequality, and the triangle inequal-
ity, we have

inf
𝜃∈B𝑅

E
[︂
𝜑(Z · (𝜃 + 𝜃*))

𝜑(V · (𝜃 + 𝜃*))

]︂
≥ inf

𝜃∈B𝑅

𝜑(E[Z] · (𝜃 + 𝜃*))

𝜑(V · (𝜃 + 𝜃*))

≥ inf
𝜃∈B𝑅

𝑒−|(Z̄−V)·(𝜃+𝜃*)|

≥ inf
𝜃∈B𝑅

𝑒−|(Z̄−V)·𝜃|−|(Z̄−V)·𝜃*)|

= 𝑒−𝑅‖Z̄−V‖2−|(Z̄−V)·𝜃*|.

We now prove the following generalization of Lemma 2.2.1

Lemma A.2.5. For any 𝑘-clustering 𝒬, 𝜃* ∈ R𝑑, and 𝑅 > 0,

𝜎𝑛(𝜃* + B𝑅) ≤ 𝑚𝑛 :=

⌈︃
𝑁

1 +
∑︀𝑘

𝑖=1 |𝐺
(−𝑛)
𝑖 |𝑒−𝑅‖Z̄(−𝑛)

𝐺,𝑖 −z𝑛‖2−|(Z̄(−𝑛)
𝐺,𝑖 −z𝑛)·𝜃*|

⌉︃
.

Furthermore, 𝑚𝑛 can be calculated in 𝑂(𝑘) time.

Proof Straightforward manipulations followed by an application of Lemma A.2.4
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yield

𝜎𝑛(𝜃* + B𝑅)−1 = inf
𝜃∈B𝑅

1

𝑁

𝑁∑︁
𝑛′=1

𝜑(z𝑛′ · (𝜃 + 𝜃*))

𝜑(z𝑛 · (𝜃 + 𝜃*))

= inf
𝜃∈B𝑅

1

𝑁

⎡⎢⎣1 +
𝑘∑︁

𝑖=1

∑︁
z∈𝐺(−𝑛)

𝑖

𝜑(z · (𝜃 + 𝜃*))

𝜑(z𝑛 · (𝜃 + 𝜃*))

⎤⎥⎦
= inf

𝜃∈B𝑅

1

𝑁

[︃
1 +

𝑘∑︁
𝑖=1

|𝐺(−𝑛)
𝑖 |E

[︃
𝜑(Z

(−𝑛)
𝐺,𝑖 · (𝜃 + 𝜃*))

𝜑(z𝑛 · (𝜃 + 𝜃*))

]︃]︃

≥ 1

𝑁

[︃
1 +

𝑘∑︁
𝑖=1

|𝐺(−𝑛)
𝑖 |𝑒−𝑅‖Z̄(−𝑛)

𝐺,𝑖 −z𝑛‖2−|(Z̄(−𝑛)
𝐺,𝑖 −z𝑛)·𝜃*|

]︃
.

To see that the bound can be calculated in 𝑂(𝑘) time, first note that the cluster 𝑖𝑛
to which z𝑛 belongs can be found in 𝑂(𝑘) time while Z̄

(−𝑛)
𝐺,𝑖𝑛

can be calculated in 𝑂(1)

time. For 𝑖 ̸= 𝑖𝑛, 𝐺
(−𝑛)
𝑖 = 𝐺𝑖, so Z̄

(−𝑛)
𝐺,𝑖 is just the mean of cluster 𝑖, and no extra

computation is required. Finally, computing the sum takes 𝑂(𝑘) time.

In order to obtain an algorithm for generating coresets for logistic regression, we
require a bound on the dimension of the range space constructed from the examples
and logistic regression likelihood.

Proposition A.2.6. The set of functions ℱ = {𝑓𝑛(𝜃) = 𝜑(z𝑛 · 𝜃) |𝑛 ∈ [𝑁 ]} satisfies
dim(ℱ) ≤ 𝑑+ 1.

Proof For all 𝐹 ⊆ ℱ ,

|{𝐹 ∩𝑅 |𝑅 ∈ ranges(ℱ)}| = |{range(𝐹,𝜃, 𝑎) |𝜃 ∈ Θ, 𝑎 ≥ 0}|,

where range(𝐹,𝜃, 𝑎) := {𝑓𝑛 ∈ ℱ | 𝑓𝑛(𝜃) ≤ 𝑎}. But, since 𝜑 is invertible and mono-
tonic,

{𝑓𝑛 ∈ ℱ | 𝑓𝑛(𝜃) ≤ 𝑎} = {𝑓𝑛 ∈ ℱ |𝜑(z𝑛 · 𝜃) ≤ 𝑎}
= {𝑓𝑛 ∈ ℱ | z𝑛 · 𝜃 ≤ 𝜑−1(𝑎)},

which is exactly a set of points shattered by the hyperplane classifier z ↦→ sgn(z·𝜃−𝑏),
with 𝑏 := 𝜑−1(𝑎). Since the VC dimension of the hyperplane concept class is 𝑑+ 1, it
follows that [79, Lemmas 3.1 and 3.2]

|{range(𝐹,𝜃, 𝑎) |𝜃 ∈ Θ, 𝑎 ≥ 0}| ≤
𝑑+1∑︁
𝑗=0

(︂
|𝐹 |
𝑗

)︂
≤

𝑑+1∑︁
𝑗=0

|𝐹 |𝑗

𝑗!

≤
𝑑+1∑︁
𝑗=0

(︂
𝑑+ 1

𝑗

)︂
|𝐹 |𝑗 = (|𝐹 |+ 1)𝑑+1.

82



Proof Combine Theorem A.2.1, Lemma 2.2.1, and Proposition A.2.6. The algo-
rithm has overall complexity 𝑂(𝑁𝑘) since it requires 𝑂(𝑁𝑘) time to calculate the
sensitivities by Lemma 2.2.1 and 𝑂(𝑁) time to sample the coreset.

A.3 Sensitivity Lower Bounds
Lemma A.3.1. Let v1, . . . ,v𝐾 ∈ R𝑑−1 be unit vectors such that for some 𝜖 > 0,
for all 𝑘 ̸= 𝑘’, v𝑘 · v𝑘′ ≤ 1 − 𝜖. Then for 0 < 𝛿 <

√︀
1/2 , there exist unit vectors

z1, . . . , z𝐾 ∈ R𝑑 such that

∙ for 𝑘 ̸= 𝑘′, z𝑘 · z𝑘′ ≥ 1− 2𝛿2 > 0

∙ for 𝑘 = 1, . . . , 𝐾 and 𝛼 > 0, there exists 𝜃𝑘 ∈ R𝑑 such that ‖𝜃‖2 ≤
√

2 𝛿𝛼,
𝜃𝑘 · z𝑘 = −𝛼𝜖𝛿2

2
and for 𝑘 ̸= 𝑘, 𝜃𝑘 · z𝑘′ ≥ 𝛼𝜖𝛿2

2
.

Proof Let z𝑘 be defined such that 𝑧𝑘𝑖 = 𝛿𝑣𝑘𝑖 for 𝑖 = 1, . . . , 𝑑−1 and 𝑧𝑘𝑑 =
√

1− 𝛿2 .
Thus, ‖z𝑘‖2 = 1 and for 𝑘 ̸= 𝑘′,

z𝑘 · z𝑘′ = 𝛿2v𝑘 · v𝑘′ + 1− 𝛿2 ≥ 1− 2𝛿2

since v𝑘 · v𝑘′ ≥ −1. Let 𝜃𝑘 be such that 𝜃𝑘𝑖 = −𝛼𝛿𝑣𝑘𝑖 for 𝑖 = 1, . . . , 𝑑 − 1 and
𝜃𝑘𝑑 = 𝛼𝛿2(1−𝜖/2)√

1−𝛿2
. Hence,

𝜃𝑘 · 𝜃𝑘 = 𝛼2𝛿2
(︂
v𝑘 · v𝑘 +

(1− 𝜖/2)2𝛿2

1− 𝛿2

)︂
≤ 2𝛼2𝛿2

𝜃𝑘 · z𝑘 = 𝛼(−𝛿2v𝑘 · v𝑘 + 𝛿2(1− 𝜖/2)) = −𝛼𝜖𝛿
2

2
,

and for 𝑘′ ̸= 𝑘,

𝜃𝑘 · z𝑘′ = 𝛼(−𝛿2v𝑘 · v𝑘′ + 𝛿2(1− 𝜖/2)) ≥ 𝛼𝛿2(−1 + 𝜖+ 1− 𝜖/2) =
𝛼𝜖𝛿2

2
.

Proposition A.3.2. Let v1, . . . ,v𝐾 ∈ R𝑑−1 be unit vectors such that for some 𝜖 > 0,
for all 𝑘 ̸= 𝑘’, v𝑘 · v𝑘′ ≤ 1 − 𝜖. Then for any 0 < 𝜖′ < 1, there exist unit vectors
z1, . . . , z𝐾 ∈ R𝑑 such that for 𝑘, 𝑘′, z𝑘 · z𝑘′ ≥ 1− 𝜖′ but for any 𝑅 > 0,

𝜎𝑘(B𝑅) ≥ 𝐾

1 + (𝐾 − 1)𝑒−𝑅𝜖
√
𝜖′ /4

,

and hence 𝜎𝑘(R𝑑) = 𝐾.
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Proof Let z1, . . . , z𝐾 ∈ R𝑑 be as in Lemma A.3.1 with 𝛿 such that 𝛿2 = 𝜖′/2. Since
for 𝑠 ≥ 0, 𝜑(𝑠)/𝜑(−𝑠) ≤ 𝑒−𝑠, conclude that, choosing 𝛼 such that

√
2 𝛼𝛿 = 𝑅, we

have

𝜎𝑛(B𝑅) = sup
𝜃∈B𝑅

𝐾 𝜑(z𝑘 · 𝜃)∑︀𝐾
𝑘′=1 𝜑(z𝑘′ · 𝜃)

≥ 𝐾 𝜑(−𝛼𝜖𝛿2/2)

𝜑(−𝛼𝜖𝛿2/2) + (𝐾 − 1)𝜑(𝛼𝜖𝛿2/2)

≥ 𝐾

1 + (𝐾 − 1)𝑒−𝛼𝜖𝛿2/2

=
𝐾

1 + (𝐾 − 1)𝑒−𝑅𝜖
√
𝜖′ /4

.

Proof Choose v1, . . . ,v𝑁 ∈ R𝑑−1 to be any 𝑁 distinct unit vectors. Apply Propo-
sition A.3.2 with 𝐾 = 𝑁 and 𝜖 = 1−max𝑛 ̸=𝑛′ v𝑛 · v𝑛′ > 0.

Proof First note that if v is uniformly distributed on S𝑑, then the distribution
of v · v′ does not depend on the distribution of 𝑉 ′ since v · v′ and v · v′′ are equal
in distribution for all v′,v′′ ∈ S𝑑. Thus it suffices to take 𝑣′1 = 1 and 𝑣′𝑖 = 0 for all
𝑖 = 2, . . . , 𝑑. Hence the distribution of v · v′ is equal to the distribution of 𝑣1. The
CDF of 𝑣1 is easily seen to be proportional to the surface area (SA) of 𝐶𝑠 := {v ∈
S𝑑 | 𝑣1 ≤ 𝑠}. That is, P[𝑣1 ≤ 𝑠] = SA(𝐶𝑠)/SA(𝐶1). Let 𝑈 ∼ Beta(𝑑−1

2
, 1
2
), and let

𝐵(𝑎, 𝑏) be the beta function. It follows from [84, Eq. 1], that by setting 𝑠 = 1 − 𝜖
with 𝜖 ∈ [0, 1/2],

P[𝑣1 ≥ 1− 𝜖] =
1

2
P[−
√

1− 𝑈 ≤ 𝜖− 1]

=
1

2
P[𝑈 ≤ 2𝜖− 𝜖2]

=
1

2𝐵(𝑑−1
2
, 1
2
)

∫︁ 2𝜖−𝜖2

0

𝑡(𝑑−3)/2(1− 𝑡)−1/2 d𝑡

≤ 1

2𝐵(𝑑−1
2
, 1
2
)
(1− 𝜖)−1

∫︁ 2𝜖−𝜖2

0

𝑡(𝑑−3)/2 d𝑡

=
1

(𝑑− 1)𝐵(𝑑−1
2
, 1
2
)

(2− 𝜖)(𝑑−1)/2

1− 𝜖
𝜖(𝑑−1)/2

≤ 2(𝑑+1)/2

(𝑑− 1)𝐵(𝑑−1
2
, 1
2
)
𝜖(𝑑−1)/2.

Applying a union bound over the
(︀
𝑑
2

)︀
distinct vector pairs completes the proof.

Lemma A.3.3 (Hoeffding’s inequality [23, Theorem 2.8]). Let 𝐴𝑘 be zero-mean,
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independent random variables with 𝐴𝑘 ∈ [−𝑎, 𝑎]. Then for any 𝑡 > 0,

P

(︃
𝐾∑︁
𝑘=1

𝐴𝑘 ≥ 𝑡

)︃
≤ 𝑒−

𝑡2

2𝑎2𝐾 .

Proof We say that unit vectors v and v′ are (1− 𝜖)-orthogonal if |v · v′| ≤ 1− 𝜖.
Clearly ‖v𝑛‖2 = 1. For 𝑛 ̸= 𝑛′, by Hoeffding’s inequality P(|v𝑛 · v𝑛′| ≥ 1 − 𝜖) ≤
2𝑒−(1−𝜖)2𝐷/2. Applying a union bound to all

(︀
𝐾
2

)︀
pairs of vectors, the probability that

any pair is not (1− 𝜖)-orthogonal is at most

2

(︂
𝐾

2

)︂
𝑒−(1−𝜖)2𝐷/2 ≤ 1

2
.

Thus, with probability at least 1
2
, v1, . . . ,v𝑁 are pairwise (1− 𝜖)-orthogonal.

Proof The data from Theorem 2.2.4 satisfies z𝑛 · z𝑛′ ≥ 1− 𝜖′, so for 𝑛 ̸= 𝑛′,

‖z𝑛 − z𝑛′‖22 = 2− 2z𝑛 · z𝑛′ ≤ 2𝜖′.

Applying Lemma 2.2.1 with the clustering 𝒬 = {z1, . . . , z𝑁} and combining it with
the lower bound in Theorem 2.2.4 yields the result.

A.4 A Priori Expected Sensitivity Upper Bounds

Proof First, fix the number of datapoints 𝑁 ∈ N. Since x𝑛 are generated from a
mixture, let 𝐿𝑛 denote the integer mixture component from which x𝑛 was generated,
let 𝐶𝑖 be the set of integers 1 ≤ 𝑗 ≤ 𝑁 with 𝑗 ̸= 𝑛 and 𝐿𝑗 = 𝑖, and let 𝐶 = (𝐶𝑖)

∞
𝑖=1.

Note that with this definition, |𝐺(−𝑛)
𝑖 | = |𝐶𝑖|. Using Jensen’s inequality and the upper

bound from Lemma 2.2.1 with the clustering induced by the label sequence,

E[𝜎𝑛(B𝑅)] ≤ E[𝑚𝑛] = 𝑁E

[︃
1

1 +
∑︀

𝑖 |𝐶𝑖|𝑒−𝑅‖Z̄(−𝑛)
𝐺,𝑖 −z𝑛‖2

]︃

= 𝑁E

[︃
E

[︃
1

1 +
∑︀

𝑖 |𝐶𝑖|𝑒−𝑅‖Z̄(−𝑛)
𝐺,𝑖 −z𝑛‖2

|𝐶

]︃]︃

≤ 𝑁E

⎡⎣ 1

1 +
∑︀

𝑖 |𝐶𝑖|𝑒
−𝑅E

[︁
‖Z̄(−𝑛)

𝐺,𝑖 −z𝑛‖2 |𝐶
]︁
⎤⎦.

Using Jensen’s inequality again and conditioning on the labels y and indicator 𝐿𝑛,

E
[︁
‖Z̄(−𝑛)

𝐺,𝑖 − z𝑛‖2 |𝐶
]︁
≤
√︂
E
[︁
‖Z̄(−𝑛)

𝐺,𝑖 − z𝑛‖22 |𝐶
]︁
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=

√︂
E
[︁
E
[︁
‖Z̄(−𝑛)

𝐺,𝑖 − z𝑛‖22 |𝐶,𝐿𝑛,y
]︁
|𝐶
]︁
.

For fixed labels y and clustering 𝐶, 𝐿𝑛, the linear combination in the expectation is
multivariate normal with

Z̄
(−𝑛)
𝐺,𝑖 − z𝑛 ∼ N

(︃
1

|𝐶𝑖|

(︃∑︁
𝑗∈𝐶𝑖

𝑦𝑗

)︃
𝜇𝑖 − 𝑦𝑛𝜇′

𝑛,
1

|𝐶𝑖|
Σ𝑖 + Σ′

𝑛

)︃
,

where 𝜇′
𝑛,Σ

′
𝑛 are the mean and covariance of the mixture component that generated

x𝑛. Further, for any multivariate normal random vector W ∈ R𝑑,

E
[︀
W𝑇W

]︀
=

𝑑∑︁
𝑚=1

E
[︀
𝑊 2

𝑚

]︀
=

𝑑∑︁
𝑚=1

Var[𝑊𝑚] + E[𝑊𝑚]2,

so

E
[︁
‖Z̄(−𝑛)

𝐺,𝑖 − z𝑛‖22 |𝐿𝑛, 𝐶,y
]︁

= Tr

[︂
1

|𝐶𝑖|
Σ𝑖 + Σ′

𝑛

]︂
+

(︂∑︀
𝑗∈𝐶𝑖

𝑦𝑗

|𝐶𝑖|

)︂2

𝜇𝑇
𝑖 𝜇𝑖 − 2𝑌𝑛

(︂∑︀
𝑗∈𝐶𝑖

𝑦𝑗

|𝐶𝑖|

)︂
𝜇𝑇
𝑖 𝜇

′
𝑛 + 𝜇′

𝑛
𝑇
𝜇′
𝑛.

Exploiting the i.i.d.-ness of 𝑦𝑗 for 𝑗 ∈ 𝐶𝑖 given 𝐶, defining 𝑦𝑗 = E[𝑦𝑖|𝐿𝑖 = 𝑗], and
noting that x𝑛 is sampled from the mixture model,

E
[︁
E
[︁
‖Z̄(−𝑛)

𝐺,𝑖 − z𝑛‖22 |𝐿𝑛, 𝐶,y
]︁
|𝐶
]︁

=
∑︁
𝑗

𝜋𝑗

(︂
Tr

[︂
1

|𝐶𝑖|
Σ𝑖 + Σ𝑗

]︂
+
|𝐶𝑖|𝑦2𝑖 + 1− 𝑦2𝑖

|𝐶𝑖|
𝜇𝑇
𝑖 𝜇𝑖 − 2𝑦𝑗𝑦𝑖𝜇

𝑇
𝑖 𝜇𝑗 + 𝜇𝑇

𝑗 𝜇𝑗

)︂
=
∑︁
𝑗

𝜋𝑗

(︂
Tr[Σ𝑖] + (1− 𝑦2𝑖 )𝜇𝑇

𝑖 𝜇𝑖

|𝐶𝑖|
+ Tr[Σ𝑗] + 𝑦2𝑖 𝜇

𝑇
𝑖 𝜇𝑖 − 2𝑦𝑗𝑦𝑖𝜇

𝑇
𝑖 𝜇𝑗 + 𝜇𝑇

𝑗 𝜇𝑗

)︂
=𝐴𝑖|𝐶𝑖|−1 +𝐵𝑖𝑛,

where 𝐴𝑖 and 𝐵𝑖 are positive constants

𝐴𝑖 = Tr[Σ𝑖] +
(︀
1− 𝑦2𝑖

)︀
𝜇𝑇
𝑖 𝜇𝑖

𝐵𝑖 =
∑︁
𝑗

𝜋𝑗
(︀
Tr[Σ𝑗] + 𝑦2𝑖 𝜇

𝑇
𝑖 𝜇𝑖 − 2𝑦𝑖𝑦𝑗𝜇

𝑇
𝑖 𝜇𝑗 + 𝜇𝑇

𝑗 𝜇𝑗

)︀
.

Therefore, with 0−1 defined to be +∞,

E[𝑚𝑛] ≤ 𝑁E

[︃
1

1 +
∑︀

𝑖 |𝐶𝑖|𝑒−𝑅
√

𝐴𝑖|𝐶𝑖|−1+𝐵𝑖

]︃
.
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As 𝑁 → ∞, we expect the values of |𝐶𝑖|/𝑁 to concentrate around 𝜋𝑖. To get a
finite sample bound using this intuition, we split the expectation into two conditional
expectations: one where all |𝐶𝑖|/𝑁 are not too far from 𝜋𝑖, and one where they may
be. Define 𝑔 : R∞

+ → R+ as

𝑔(𝑥) =
1

1 +
∑︀

𝑖 𝑥𝑖𝑒
−𝑅
√

𝐴𝑖𝑥
−1
𝑖 +𝐵𝑖

,

𝜋 = (𝜋1, 𝜋2, . . . ), 𝜖 = (𝜖1, 𝜖2, . . . ) with 𝜖𝑖 > 0, and 𝜂𝑖 = max(𝜋𝑖 − 𝜖𝑖, 0). Then

E[𝑚𝑛] ≤ 𝑁P
(︂
∀𝑖, |𝐶𝑖|

𝑁
≥ 𝜂𝑖

)︂
𝑔(𝑁𝜂) +𝑁P

(︂
∃𝑖 :
|𝐶𝑖|
𝑁

< 𝜂𝑖

)︂
= 𝑁𝑔(𝑁𝜂) +𝑁P

(︂
∃𝑖 :
|𝐶𝑖|
𝑁

< 𝜂𝑖

)︂
(1− 𝑔(𝑁𝜂)).

Using the union bound, noting that 1 − 𝑔(𝑁𝜂) ≤ 1, and then using Hoeffding’s
inequality yields

E[𝑚𝑛] ≤ 𝑁𝑔(𝑁𝜂) +𝑁
∑︁
𝑖

P
(︂
|𝐶𝑖|
𝑁

< 𝜂𝑖

)︂
≤ 𝑁𝑔(𝑁𝜂) +𝑁

∑︁
𝑖:𝜋𝑖>𝜖𝑖

P
(︂
|𝐶𝑖|
𝑁
− 𝜋𝑖 < −𝜖𝑖

)︂
≤ 𝑁𝑔(𝑁𝜂) +𝑁

∑︁
𝑖:𝜋𝑖>𝜖𝑖

𝑒−2𝑁𝜖2𝑖

=
1

𝑁−1 +
∑︀

𝑖 𝜂𝑖𝑒
−𝑅
√

𝐴𝑖𝑁−1𝜂−1
𝑖 +𝐵𝑖

+
∑︁

𝑖:𝜋𝑖>𝜖𝑖

𝑁𝑒−2𝑁𝜖2𝑖 .

We are free to pick 𝜖 as a function of 𝜋 and 𝑁 . Let 𝜖 = 𝑁−𝑟 for any 0 < 𝑟 < 1/2.
Note that this means 𝜂𝑖 = max(𝜋𝑖 −𝑁−𝑟, 0). Then

E[𝑚𝑛] =
1

𝑁−1 +
∑︀

𝑖 𝜂𝑖𝑒
−𝑅
√

𝐴𝑖𝑁−1𝜂−1
𝑖 +𝐵𝑖

+
∑︁
𝑖:𝜂𝑖>0

𝑁𝑒−2𝑁1−2𝑟

.

It is easy to see that the first term converges to
(︁∑︀

𝑖 𝜋𝑖𝑒
−𝑅

√
𝐵𝑖

)︁−1

by a simple asymp-
totic analysis. To show the second term converges to 0, note that for all 𝑁 ,∑︁

𝑖

𝜋𝑖 =
∑︁

𝑖:𝜋𝑖>𝑁−𝑟

𝜋𝑖 +
∑︁

𝑖:𝜋𝑖≤𝑁−𝑟

𝜋𝑖

≥
∑︁

𝑖:𝜋𝑖>𝑁−𝑟

𝜋𝑖

≥
∑︁

𝑖:𝜋𝑖>𝑁−𝑟

𝑁−𝑟
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=
⃒⃒{︀
𝑖 : 𝜋𝑖 > 𝑁−𝑟

}︀⃒⃒
𝑁−𝑟.

Since
∑︀

𝑖 𝜋𝑖 = 1 < ∞, |{𝑖 : 𝜋𝑖 > 𝑁−𝑟}| = 𝑂(𝑁 𝑟). Therefore there exists constants
𝐶,𝑀 <∞ such that ⃒⃒{︀

𝑖 : 𝜋𝑖 > 𝑁−𝑟
}︀⃒⃒
≤𝑀 + 𝐶𝑁 𝑟,

and thus ∑︁
𝑖:𝜋𝑖>𝑁−𝑟

𝑁𝑒−2𝑁1−2𝑟 ≤ 𝑁(𝑀 + 𝐶𝑁 𝑟)𝑒−2𝑁1−2𝑟 → 0, 𝑁 →∞.

Finally, since 𝑚̄𝑁 = 1
𝑁

∑︀𝑁
𝑛=1𝑚𝑛, we have E[𝑚̄𝑁 ] = E[𝑚𝑛], and the result follows.

Proof This is a direct result of Proposition 2.2.8 with 𝜋1 = 1, 𝜋𝑖 = 0 for 𝑖 ≥ 2.
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Appendix B

Chapter 3 Proofs

B.1 Chebyshev Approximation Results
We begin by summarizing some standard results on the approximation accuracy of
Chebyshev polynomials. Let 𝜑 : [−1, 1] → R be a continuous function, and let 𝜑𝑀

be the 𝑀 -th order Chebyshev approximation to 𝜑. Let ‖𝑓‖∞ := sup𝑠 |𝑓(𝑠)| be the
𝐿∞ norm of a function 𝑓 ; let C denote the set of complex numbers; and let |𝑧| be the
absolute value of 𝑧 ∈ C.

Theorem B.1.1 (Mason and Handscomb [93, Theorem 5.14]). If 𝜑 has 𝑘 + 1 con-
tinuous derivatives, then ‖𝜑− 𝜑𝑀‖∞ = 𝑂(𝑀−𝑘).

Theorem B.1.2 (Mason and Handscomb [93, Theorem 5.16]). If 𝜑 can be extended
to an analytic function on 𝐸𝑟 := {𝑧 ∈ C : |𝑧 +

√
𝑧2 − 1 | = 𝑟} for 𝑟 > 1 and

𝐶 := sup𝑧∈𝐸𝑟
|𝜑(𝑧)|, then

‖𝜑− 𝜑𝑀‖∞ ≤
𝐶

𝑟 − 1
𝑟−𝑀 .

Chebyshev polynomials also provide a uniformly good approximation of the deriva-
tive of the function they are used to approximate.

Theorem B.1.3. If 𝜑 can be extended to an analytic function on 𝐸𝑟 for 𝑟 > 1 and
𝐶 := sup𝑧∈𝐸𝑟

|𝜑(𝑧)|, then

‖𝜑′ − 𝜑′
𝑀‖∞ ≤ 𝐶𝑟−𝑀 𝑟 + 1

(𝑟 − 1)4
[︀
𝑀2𝑟(𝑟 + 1) +𝑀(2𝑟2 + 𝑟 + 1) + 𝑟(𝑟 + 1)

]︀
=: 𝐵(𝐶, 𝑟,𝑀)

Proof The proof follows the same structure as that for Theorem 5.16 in Mason
and Handscomb [93]. For Chebyshev polynomials, 𝜍(d𝑠) = 2

𝜋
(1 − 𝑠2)−1/2d𝑠. Note

that 𝜑(𝑠) =
∑︀∞

𝑚=0(
∫︀
𝜑𝜓𝑚d𝜍)𝜓𝑚(𝑠) and hence 𝜑′(𝑠) =

∑︀∞
𝑚=0(

∫︀
𝜑𝜓𝑚d𝜍)𝜓′

𝑚(𝑠). Since
𝜓′
𝑚 = 𝑚𝑈𝑚−1, where {𝑈𝑚}𝑚≥0 are the Chebyshev polynomials of the second kind,

𝜑′(𝑠)− 𝜑′
𝑀(𝑠) =

∞∑︁
𝑚=𝑀+1

2𝑚

𝜋

∫︁ 1

−1

(1− 𝑣2)−1/2𝜑(𝑣)𝜓𝑚(𝑣)𝑈𝑚−1(𝑠)d𝑣.

89



Define the conformal mappings 𝑠 = 1
2
(𝜉+𝜉−1) and 𝑣 = 1

2
(𝜁+𝜁−1), and 𝜑(𝑣) =: 𝜑(𝜁) =

𝜑(𝜁−1). By assumption, |𝜑(𝜁)| ≤ 𝐶. Let 𝒞1 denote the complex unit circle and for
𝑟 ∈ R+, let 𝒞𝑟 := 𝑟𝒞1. Using the conformal mappings, we have

𝜑′(𝑠)− 𝜑′
𝑀(𝑠)

=
∞∑︁

𝑚=𝑀+1

𝑚

4i𝜋

∮︁
𝒞1
𝜑(𝜁)(𝜁𝑚 + 𝜁−𝑚)

𝜉𝑚 − 𝜉−𝑚

𝜉 − 𝜉−1

d𝜁

𝜁

=
∞∑︁

𝑚=𝑀+1

𝑚

2i𝜋

∮︁
𝒞𝑟
𝜑(𝜁)𝜁−𝑚 𝜉

𝑚 − 𝜉−𝑚

𝜉 − 𝜉−1

d𝜁

𝜁

=
1

2i𝜋

∮︁
𝒞𝑟

𝜑(𝜁)

𝜉 − 𝜉−1

(︂
𝜉𝑀+1𝜁−𝑀−1(1 +𝑀 + 𝜉𝜁−1)

(𝜉𝜁−1 − 1)2
− 𝜉−𝑀−1𝜁−𝑀−1(1 +𝑀 + 𝜉−1𝜁−1)

(𝜁−1𝜉−1 − 1)2

)︂
d𝜁

𝜁

≤ 𝐶

2i𝜋

∮︁
𝒞𝑟

𝜉𝜁−𝑀−1𝜉−𝑀−1

𝜉2 − 1

(︂
𝜉2𝑀+2(1 +𝑀 + 𝜉𝜁−1)

(𝜉𝜁−1 − 1)2
− (1 +𝑀 + 𝜉−1𝜁−1)

(𝜁−1𝜉−1 − 1)2

)︂
d𝜁

𝜁
.

Letting 𝜂 := 𝜉2 and 𝜓 := 𝜉−1𝜁−1, the absolute value of the integrand is

|𝜓|𝑀+1

|𝜂 − 1|

⃒⃒⃒⃒
𝜂𝑀+1(1 +𝑀 − 𝜂𝜓)

(𝜂𝜓 − 1)2
− 1 +𝑀 − 𝜓

(𝜓 − 1)2

⃒⃒⃒⃒
= 𝑟−𝑀−1 |𝜂𝜓 − 1|−2|𝜓 − 1|−2

|𝜂 − 1|
⃒⃒
𝜂𝑀+1(1 +𝑀 − 𝜂𝜓)(𝜓 − 1)2 − (1 +𝑀 − 𝜓)(𝜂𝜓 − 1)2

⃒⃒
≤ 𝑟−𝑀−1 (𝑟−1 − 1)−4

|𝜂 − 1|

[︁
|𝜓||𝜂𝑀+2 − 1|+ (𝑀 + 1)|𝜂𝑀+1 − 1|+ 2|𝜓|2|𝜂𝑀+1 − 1|

+ 2(𝑀 + 1)|𝜓||𝜂𝑀 − 1|+ |𝜓|3|𝜂𝑀 − 1|+ (𝑀 + 1)|𝜑|2|𝜂𝑀−1 − 1|
]︁

≤ 𝑟−𝑀+3

(𝑟 − 1)4

[︂
𝑀 + 2

𝑟
+ (𝑀 + 1)2 +

2(𝑀 + 1)

𝑟2
+

2𝑀(𝑀 + 1)

𝑟
+
𝑀

𝑟3
+
𝑀2 − 1

𝑟2

]︂
= 𝑟−𝑀 𝑟 + 1

(𝑟 − 1)4
[︀
𝑀2𝑟(𝑟 + 1) +𝑀(2𝑟2 + 𝑟 + 1) + 𝑟(𝑟 + 1)

]︀
.

The final inequality follows from the fact that for 𝑘 ∈ N,

|𝜂𝑘 − 1|/|𝜂 − 1| = | sin(𝑘 arg(𝜂))/ sin(arg(𝜂)| ≤ 𝑘.

The result now follows.

Since 𝜑logit is smooth, we can apply Theorems B.1.2 and B.1.3 to obtain exponential
convergence rates of the (derivative of the) Chebyshev approximation. The same is
true in the Poisson and smoothed Huber regression cases.

Corollary B.1.4. Fix 𝑅 > 0. If 𝜑(𝑠) = log(1 + 𝑒−𝑅𝑠), 𝑠 ∈ [−1, 1], then for any
𝑟 ∈ (1, 𝜋/𝑅 +

√︀
𝜋2/𝑅2 + 1 ),

‖𝜑− 𝜑𝑀‖∞ ≤
𝐶(𝑟, 𝑅)

(𝑟 − 1)𝑟𝑀
and ‖𝜑′ − 𝜑′

𝑀‖∞ ≤ 𝐵(𝐶(𝑟, 𝑅), 𝑟,𝑀),
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where 𝐶(𝑟, 𝑅) :=
⃒⃒⃒
log
(︁

1 + 𝑒−
1
2
𝑅(𝑟−𝑟−1)i

)︁⃒⃒⃒
.

Proof The function 𝑒−𝑅𝑠 is entire while log is analytic except at 0. Thus, we
must determine the minimum value of 𝑟 such that there exists 𝑧 ∈ 𝐸𝑟 such that
1+𝑒−𝑅𝑧 = 0. Taking 𝑧 = 𝑎+𝑏i, it must hold that 𝑏 ∈ {𝑘𝜋/𝑅 : 𝑘 ∈ Z} since otherwise
𝑒−𝑅𝑧 would contain an imaginary component. If 𝑏 = 2𝑘𝜋/𝑅 then 𝑒−𝑅𝑧 = 𝑒−𝑅𝑎 > 0,
so this cannot be a solution to 1 + 𝑒−𝑅𝑧 = 0. However, taking 𝑏 = (2𝑘+ 1)𝜋/𝑅 yields
1− 𝑒−𝑅𝑎 = 0 =⇒ 𝑎 = 0. Hence, 𝑧 = (2𝑘 + 1)𝜋i/𝑅 and thus

|𝑧 +
√
𝑧2 − 1 | = |𝜋i/𝑅 +

√︀
−(2𝑘 + 1)2𝜋2/𝑅2 − 1 |

= |(𝜋/𝑅 +
√︀

(2𝑘 + 1)2𝜋2/𝑅2 + 1 )i|
= 𝜋/𝑅 +

√︀
(2𝑘 + 1)2𝜋2/𝑅2 + 1

≥ 𝜋/𝑅 +
√︀
𝜋2/𝑅2 + 1 .

Thus we must choose 𝑟 < 𝜋/𝑅 +
√︀
𝜋2/𝑅2 + 1 . For any such 𝑟, |𝜑(𝑧)| is maximized

along 𝐸𝑟 when 𝑧 = 𝑏i, which implies 𝑏 = 1
2
(𝑟− 𝑟−1) and hence 𝐶 = 𝐶(𝑟, 𝑅). The two

inequalities now follow from, respectively, Theorems B.1.2 and B.1.3.

Corollary B.1.5. Fix 𝑅 > 0. If 𝜑(𝑠) = 𝑒𝑅𝑠, 𝑠 ∈ [−1, 1], then for any 𝑟 > 1,

‖𝜑− 𝜑𝑀‖∞ ≤
𝑒

1
2
𝑅(𝑟+𝑟−1)

(𝑟 − 1)𝑟𝑀

‖𝜑′ − 𝜑′
𝑀‖∞ ≤ 𝐵(𝑒

1
2
𝑅(𝑟+𝑟−1), 𝑟,𝑀).

Proof The proof is similar to that for Corollary B.1.4. The differences are as fol-
lows. The function 𝑒−𝑅𝑠 is entire, so we may choose any 𝑟 > 1. For any such 𝑟,
|𝜑(𝑧)| is maximized along 𝐸𝑟 when 𝑧 is real, which implies 𝑧 = 1

2
(𝑟 + 𝑟−1) and hence

𝐶 = 𝑒
1
2
𝑅(𝑟+𝑟−1).

Corollary B.1.6. Fix 𝑅 > 0. If 𝜑(𝑠) = 𝑏2
(︂√︁

1 + 𝑅2𝑠2

𝑏2
− 1

)︂
, 𝑠 ∈ [−1, 1], then for

any 𝑟 ∈ (1, 𝑏/𝑅 +
√︀
𝑏2/𝑅2 + 1 ),

‖𝜑− 𝜑𝑀‖∞ ≤
𝑏2
√︀

1 + {(𝑟2 + 1)/(2𝑟𝑏)}2 − 𝑏2

𝑟 − 1
𝑟−𝑀

‖𝜑′ − 𝜑′
𝑀‖∞ ≤ 𝐵

(︁
𝑏2
√︀

1 + {(𝑟2 + 1)/(2𝑟𝑏)}2 − 𝑏2, 𝑟,𝑀
)︁
.

Proof The proof is similar to that for Corollary B.1.4. The differences are as
follows. The square root function is analytic except at zero, so we must determine
the minimum value of 𝑟 such that there exists 𝑧 ∈ 𝐸𝑟 such that 1 + 𝑅2𝑧2/𝑏2 = 0.
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Solving, we find that 𝑧 = i𝑏/𝑅. Thus, we have

|𝑧 +
√
𝑧2 − 1 | = 𝑏/𝑅 +

√︀
𝑏2/𝑅2 + 1

and so must choose 1 < 𝑟 < 𝑏/𝑅+
√︀
𝑏2/𝑅2 + 1 . For any such 𝑟, |𝜑(𝑧)| is maximized

along 𝐸𝑟 when 𝑧 is real, which implies 𝑧 = 𝑟2+1
2𝑟

and hence 𝐶 = 𝑏2
(︂√︁

1 +
(︀
𝑟2+1
2𝑟𝑏

)︀2 − 1

)︂
.

B.2 PASS-GLM Theorems and Proofs

Theorem B.2.1. Let B𝑟(𝜃
*) := {𝜃 ∈ Θ | ‖𝜃 − 𝜃*‖2 ≤ 𝑟}. Assume there exist param-

eters 𝜀𝑁 and 𝜚𝑁 such that for all 𝜃 ∈ B𝑟𝑁 (𝜃MAP), where 𝑟2𝑁 := 4𝜀𝑁/𝜚𝑁 ,

(A) |ℒ𝒟(𝜃)− ℒ̃𝒟(𝜃)| ≤ 𝜀𝑁 and (B) − log 𝜋𝒟 is 𝜚𝑁 -strongly convex.1

Furthermore, assume that for all 𝜃 ∈ Θ,

(C) log 𝜋𝒟 is strictly quasi-concave2 and (D) ℒ̃𝒟(𝜃) ≤ ℒ𝒟(𝜃) + 𝜀𝑁 .

Then ‖𝜃MAP − 𝜃MAP‖22 ≤ 4𝜀𝑁
𝜚𝑁

.

Remark (Assumptions). The error in the MAP estimate naturally depends on the
error of the approximate log-likelihood (Assumption (A)) as well as the flatness of
the posterior (Assumption (B)). In the latter case, if log 𝜋𝒟 is very flat, then even a
small error from using ℒ̃𝒟 in place of ℒ𝒟 could lead to a large error in the approximate
MAP solution. However, the stronger assumptions, (A) and (B), need hold only near
the MAP solution.

Remark (Strict quasi-concavity). Requiring that log 𝜋𝒟 be only strictly quasi-concave
(rather than strongly log-concave everywhere) substantially increases the applicability
of the result. For instance, it allows heavy-tailed priors (e.g., Cauchy) as well as
sparsity-inducing priors (e.g., Laplace/𝐿1 regularization).

Proof [Proof of Theorem B.2.1] An equivalent condition for 𝑓 to be strictly quasi-
convex is that if 𝑓(v) > 𝑓(w) then ⟨∇𝑓(w),v − w⟩ > 0 [126, Theorem 21.14]. We
obtain the result by considering some 𝜃 such that 𝜃 /∈ B𝑟𝑁 (𝜃MAP). Since 𝜛 := log 𝜋𝒟
is strictly quasi-concave (by Assumption (C)), if it has a global maximum it is unique
(if it had two global maxima, this would immediately yield a contradiction). By
hypothesis 𝜃MAP is such a global maximum. Thus, 𝜛(𝜃MAP) > 𝜛(𝜃), which implies

⟨∇𝜛(𝜃),𝜃MAP − 𝜃⟩ > 0. (B.2.1)

1A differentiable function 𝑓 : R𝑑 → R is 𝜚-strongly convex if for all v,w ∈ R𝑑, 𝑓(v) ≥ 𝑓(w) +
⟨∇𝑓(w),v −w⟩+ (𝜚/2)‖v −w‖22.

2An arbitrary function 𝑔 : R𝑑 → R is strictly quasi-concave if for all v,w ∈ R𝑑, v ̸= w, and
𝑡 ∈ (0, 1), 𝑔(𝑡v + (1− 𝑡)w) > min{𝑔(v), 𝑔(w)}.
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Now, fix 𝜃′ such that 𝜃′ /∈ B𝑟𝑁 (𝜃MAP). Let 𝑟′𝑁 := ‖𝜃′−𝜃MAP‖2 > 𝑟𝑁 and 𝜃′′ := 𝑟𝑁
𝑟′𝑁
𝜃′+

𝑟′𝑁−𝑟𝑁
𝑟′𝑁

𝜃MAP, the projection of 𝜃′ onto B𝑟𝑁 (𝜃MAP). Applying the fundamental theorem
of calculus for line integrals on the linear path 𝛾[𝜃′,𝜃′′] from 𝜃′ to 𝜃′′, parameterized
as 𝜃(𝑡) = 𝑡𝜃′′ + (1− 𝑡)𝜃′, we have

ℒ𝒟(𝜃′′)− ℒ𝒟(𝜃′) =

∫︁
𝛾[𝜃′,𝜃′′]

∇𝜛(𝜃) · d𝜃

=

∫︁ 1

0

∇𝜛(𝜃(𝑡)) · (𝜃′′ − 𝜃′) d𝑡

=
𝑟′𝑁 − 𝑟𝑁
𝑟′𝑁

∫︁ 1

0

∇𝜛(𝜃(𝑡)) · (𝜃MAP − 𝜃′) d𝑡

=
𝑟′𝑁 − 𝑟𝑁
𝑟′𝑁

∫︁ 1

0

𝐶(𝑡)∇𝜛(𝜃(𝑡)) · (𝜃MAP − 𝜃(𝑡))d𝑡

> 0,

where 𝐶(𝑡) :=
𝑟′𝑁

𝑟′𝑁−𝑡𝑟′𝑁+𝑡𝑟𝑁
and the inequality follows from Eq. (B.2.1). Hence,

𝜛(𝜃′) < 𝜛(𝜃′′) (B.2.2)

and

log 𝜋0(𝜃
′) + ℒ̃𝒟(𝜃′) ≤ log 𝜋0(𝜃

′) + ℒ𝒟(𝜃′) + 𝜀𝑁 by Assumption (D)
< log 𝜋0(𝜃

′′) + ℒ𝒟(𝜃′′) + 𝜀𝑁 by Eq. (B.2.2)

≤ log 𝜋0(𝜃MAP) + ℒ𝒟(𝜃MAP) + 𝜀𝑁 −
𝜚𝑁𝑟

2
𝑁

2
by Assumption (B)

= log 𝜋0(𝜃MAP) + ℒ𝒟(𝜃MAP)− 𝜀𝑁 by definition of 𝑟𝑛
≤ log 𝜋0(𝜃MAP) + ℒ̃𝒟(𝜃MAP) by Assumption (A).

So 𝜃′ is not a global optimum of log 𝜋̃𝒟 and hence 𝜃MAP ∈ B𝑅𝑁
(𝜃MAP).

We present a generalization of Corollary 3.2.1. Let ‖T‖𝑜𝑝 := sup v∈R𝑑

‖v‖2=1

‖T[v]‖𝑜𝑝

denote the operator norm of the tensor T (with ‖T‖𝑜𝑝 = ‖T‖2 if T is a matrix).
Recall the Lipschitz operator bound property

‖∇ℎ(𝑥)‖𝑜𝑝 = sup
𝑦 ̸=𝑥

‖ℎ(𝑥)− ℎ(𝑦)‖𝑜𝑝
‖𝑥− 𝑦‖2

, (B.2.3)

which holds for any sufficiently smooth ℎ : R𝑑 → (R𝑑)⊗𝑘. Recall also that for com-
patible operators 𝑇 and 𝑇 ′, ‖𝑇𝑇 ′‖𝑜𝑝 ≤ ‖𝑇‖𝑜𝑝‖𝑇 ′‖𝑜𝑝.
Corollary B.2.2. Assume the tensor defined by 𝑇𝑖𝑗𝑘 :=

∑︀𝑁
𝑛=1 𝑥𝑛𝑖𝑥𝑛𝑗𝑥𝑛𝑘 satisfies

‖T‖𝑜𝑝 ≤ 𝐿𝑁/𝑑2.
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For the logistic regression model, assume that ‖∇2ℒ𝒟(𝜃MAP)−1‖2 ≤ 𝑐𝑑/𝑁 and that
‖x𝑛‖2 ≤ 1 for all 𝑛 = 1, . . . , 𝑁 . Let 𝜑𝑀 be the order 𝑀 Chebyshev approximation to
𝜑logit on [−𝑅,𝑅] such that Eq. (3.1) holds. Let 𝜋̃𝒟(𝜃) denote the posterior approxi-
mation obtained by using 𝜑𝑀 with a strictly quasi-log concave prior. Let

𝜀 := min
𝑟∈(1,𝜋/𝑅+

√
𝜋2/𝑅2+1 )

⃒⃒⃒
log
(︁

1 + 𝑒−
1
2
𝑅(𝑟−𝑟−1)i

)︁⃒⃒⃒
(𝑟 − 1)−1𝑟−𝑀

and 𝛼* := 1 + 𝑏−
√︀

(𝑏+ 1)2 − 1 , where 𝑏 := 𝜀𝐿2𝑐3

54𝑑
. If 𝑅− ‖𝜃MAP‖2 ≥ 2

√︁
𝑐𝑑𝜀
𝛼* , then

‖𝜃MAP − 𝜃MAP‖22 ≤
4𝑐𝑑𝜀

𝛼* ≤
4

27
𝑐4𝐿2𝜀2 + 8𝑐𝑑𝜀

and Corollary 3.2.1 follows from the upper bound ‖T‖𝑜𝑝 ≤ 𝑁 (using the assumption
that ‖x𝑛‖2 ≤ 1).

Proof By Corollary B.1.4, for all 𝑠 ∈ [−𝑅,𝑅], |𝜑logit(𝑠)−𝜑𝑀(𝑠)| ≤ 𝜀𝑁 . It is easy to
verify that max𝑠∈R |𝜑′′′

logit(𝑠)| = 1
6
√
3

and therefore ‖∇3ℒ𝒟(𝜃)‖𝑜𝑝 ≤ 1
6
√
3
‖T‖𝑜𝑝 ≤ 𝐿𝑁

6
√
3 𝑑2

.
Since by hypothesis ‖(∇2ℒ𝒟(𝜃MAP))−1‖2 ≤ 𝑐𝑑/𝑁 , ℒ𝒟(𝜃MAP) is 𝑁/(𝑐𝑑)-strongly con-
cave. We can write ∇(∇2ℒ𝒟)−1 = −(∇2ℒ𝒟)−1∇3ℒ𝒟(∇2ℒ𝒟)−1 if we treat the first
(∇2ℒ𝒟)−1 as a matrix to matrix operator, ∇3ℒ𝒟 as a vector to matrix operator, and
the second (∇2ℒ𝒟)−1 as a vector to vector operator. Thus

‖∇(∇2ℒ𝒟)−1(𝜃)‖𝑜𝑝 ≤ ‖(∇2ℒ𝒟)−1(𝜃)‖2𝑜𝑝‖∇3ℒ𝒟(𝜃)‖𝑜𝑝 ≤
𝑐2𝑑2

𝑁2

𝐿𝑁

6
√

3 𝑑2
=

𝑐2𝐿

6
√

3𝑁
.

Using the triangle inequality and Eq. (B.2.3), we have

‖(∇2ℒ𝒟)−1(𝜃)‖𝑜𝑝 ≤ ‖(∇2ℒ𝒟)−1(𝜃MAP)‖𝑜𝑝 + ‖(∇2ℒ𝒟)−1(𝜃)− (∇2ℒ𝒟)−1(𝜃MAP)‖𝑜𝑝
≤ ‖(∇2ℒ𝒟)−1(𝜃MAP)‖𝑜𝑝 + ‖∇(∇2ℒ𝒟)−1(𝜃)‖𝑜𝑝‖𝜃 − 𝜃MAP‖2

≤ 𝑐𝑑

𝑁
+

𝑐2𝐿

6
√

3𝑁
‖𝜃 − 𝜃MAP‖2,

so ℒ𝒟(𝜃) is 𝛼𝑁/(𝑐𝑑)-strongly concave for all 𝜃 ∈ BΔ(𝜃MAP) if

𝑐𝑑

𝑁
+

𝑐2𝐿∆

6
√

3𝑁
≤ 𝑐𝑑

𝑁𝛼
⇔ ∆2 ≤ 108𝑑2(1− 𝛼)2

𝐿2𝑐2𝛼2
.

To apply Theorem B.2.1, we require that ∆2 ≥ 4𝜀𝑐𝑑/𝛼. Combining the two inequal-
ities, we have

4𝜀𝑐𝑑

𝛼
≤ 108𝑑2(1− 𝛼)2

𝐿2𝑐2𝛼2
⇔ 𝜀𝑐3𝐿2

27𝑑
𝛼 ≤ (1− 𝛼)2 ⇔ 0 ≤ 𝛼2 − (2 + 𝑏)𝛼 + 1.

Solving the quadratic implies that the maximal viable 𝛼 value is 𝛼* = 1 + 𝑏 −√︀
(𝑏+ 1)2 − 1 ≥ 1

2(𝑏+1)
.
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Requiring 𝑅 − ‖𝜃MAP‖2 ≥ 2
√︁

𝑐𝑑𝜀
𝛼* together with the hypothesis that ‖x𝑛‖ ≤ 1

ensures that we are considering only inner products x𝑛 · 𝜃 ∈ [−𝑅,𝑅]. Since Eq. (3.1)
holds by hypothesis, Assumption (D) holds. The result now follows from Theo-
rem B.2.1.

Proof [Proof sketch of Corollary 3.2.3] The proof is similar in spirit to Corol-
lary B.2.2. The key differences are that we apply Corollary B.1.6 and use the condition
that a constant fraction of the data satisfies |x𝑛 ·𝜃MAP−𝑦𝑛| ≤ 𝑏/2 to guarantee Θ(𝑁)-
strong log-convexity of − log 𝜋𝒟 near the MAP.

Recall that a centered random variable 𝑋 is said to be 𝜎2-subgaussian [23, Section
2.3] if for all 𝑠 ∈ R,

E[𝑒𝑠𝑋 ] ≤ 𝑒𝑠
2𝜎2/2.

Theorem B.2.3. Assume that

(E) − log 𝜋̃𝒟(𝜃) is 𝜚-strongly convex,

(F) for all 𝑛 = 1, . . . , 𝑁 , ‖x𝑛‖2 ≤ 1,

(G) there exist constants 𝑎𝑛, 𝑏, 𝑅, 𝛼 ∈ R+ such that

‖∇𝜃𝜑(⟨𝑦𝑛x𝑛,𝜃⟩)−∇𝜃𝜑𝑀(⟨𝑦𝑛x𝑛,𝜃⟩)‖2 ≤ 𝑎𝑛 + 𝑏max(0, |⟨𝑦𝑛x𝑛,𝜃⟩| −𝑅), and

(H) − log 𝜋𝒟(𝜃) is 𝜚-strongly convex with mean 𝜃.

Let 𝜎1, 𝜎2 be the subgaussianity constants of, respectively, the random variables

⟨𝑦𝑛x𝑛,𝜃⟩ − 𝛿1 and ‖𝑦𝑛x𝑛‖22 − 𝛿2,

where the randomness is over 𝑛 ∼ Unif{1, . . . , 𝑁}. Let 𝛿1 := E[⟨𝑦𝑛x𝑛,𝜃⟩], 𝛿2 :=
E[‖𝑦𝑛x𝑛‖22], and 𝑎̄ :=

∑︀𝑁
𝑛=1 𝑎𝑛. Then there exists an explicit constant 𝜀 (equal to zero

if 𝑏 = 0 and depending on 𝑅, 𝜚, 𝜎1, 𝜎2, 𝛿1, and 𝛿2 otherwise) such that

𝑑𝒲(𝜋𝒟, 𝜋̃𝒟) ≤ 𝜚−1(𝑎̄+𝑁𝑏𝜀).

Remark (Value of 𝜀). The definition of the constant 𝜀 is given in the proof of the
theorem.

Remark (Assumptions). Our posterior approximation result primarily depends on
the peakedness of the approximate posterior (Assumption (E)) and the error of the
approximate gradients (Assumption (G)). If the gradients are poorly approximated
then the error can be large while if the (approximate) posterior is flat then even small
likelihood errors could lead to large shifts in expected values of the parameters and
hence large Wasserstein error.

95



Remark (Verifying assumptions). In the corollaries we use Theorem B.1.3 to control
the gradient error in the case of Chebyshev polynomial approximations, which allows
us to satisfy Assumption (G). Whether Assumption (E) holds will depend on the
choices of 𝑀 , 𝜑, and 𝜋0. For example, if 𝑀 = 2 and − log 𝜋0 is convex, then the
assumption holds. This assumption could be relaxed to only assume, e.g., a “bounded
concavity” condition along with strong convexity in the tails. See Eberle [46], Gorham
et al. [62, Section 4], and Appendix C.1 for full details. It is possible that Assumption
(H) could also be weakened. The key is to have some control of the tails of 𝜋𝒟. Both
⟨𝑦𝑛x𝑛,𝜃⟩ and ‖𝑦𝑛x𝑛‖22 are subgaussian since 𝑦𝑛x𝑛 is bounded.

Proof [Proof of Theorem B.2.3] By Assumption (G), we have that

err(𝜃) := ‖∇ log 𝜋𝒟(𝜃)−∇ log 𝜋̃𝒟(𝜃)‖2

≤
𝑁∑︁

𝑛=1

‖∇𝜃𝜑(⟨𝑦𝑛x𝑛,𝜃⟩)−∇𝜃𝜑𝑀(⟨𝑦𝑛x𝑛,𝜃⟩)‖2

≤ 𝑎̄+
𝑁∑︁

𝑛=1

𝑏max(0, |⟨𝑦𝑛x𝑛,𝜃⟩| −𝑅).

By Lemma B.2.4, the random variable 𝑊 := ⟨𝑦𝑛x𝑛,𝜃⟩ − 𝛿1 is (𝜆, 𝛽)-subexponential.
Hence for 𝑡 ≥ 0,

P(𝑊 ≥ 𝑡) ∨ P(𝑊 − 𝛿 ≤ −𝑡) ≤ 𝑝(𝑡, 𝜆, 𝛽) := 𝑒
−
(︁

𝑡2

2𝜆2
∧ 𝑡

2𝛽

)︁
.

We can now bound 𝜋𝒟(err):

𝜋𝒟(err) ≤ 𝑎𝑁 +
𝑁∑︁

𝑛=1

E𝜃∼𝜋𝒟 [𝑏max(0, |⟨𝑦𝑛x𝑛,𝜃⟩| −𝑅)].

= 𝑎𝑁 + 𝑏𝑁E𝑛∼Unif{1,...,𝑁}E𝜃∼𝜋𝒟 [max(0, |⟨𝑦𝑛x𝑛,𝜃⟩| −𝑅))

= 𝑎𝑁 + 𝑏𝑁E[max(0, |𝑊 + 𝛿1| −𝑅))]

= 𝑎𝑁 + 𝑏𝑁E[(𝑊 + 𝛿1 +𝑅)1(𝑊 + 𝛿1 ≤ −𝑅) + (𝑊 + 𝛿1 −𝑅)1(𝑊 + 𝛿1 ≥ 𝑅)].
(B.2.4)

For the second term in the expectation, we have

E[(𝑊 + 𝛿1 −𝑅)1(𝑊 ≥ 𝑅− 𝛿1)]

=

∫︁ ∞

𝑅−𝛿1

(𝑤 + 𝛿1 −𝑅)𝑝(d𝑤)

=

∫︁ ∞

𝑅−𝛿

P(𝑊 ≥ 𝑡) d𝑡

≤ 0 ∨ (𝛿1 −𝑅) +

∫︁ ∞

0∨(𝑅−𝛿1)

𝑝(𝑡, 𝜆, 𝛽)d𝑡 =: 𝐵(𝑅, 𝛿1, 𝜆, 𝛽),

By symmetry, the first term in the expectation in Eq. (B.2.4) is bounded by𝐵(𝑅,−𝛿1, 𝜆, 𝛽),
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so

𝜋𝒟(err) ≤ 𝑎̄+𝑁𝑏(𝐵(𝑅, 𝛿1, 𝜆, 𝛽) +𝐵(𝑅,−𝛿1, 𝜆, 𝛽)).

Assumption (E) implies that 𝜋̃𝒟 satisfies Assumption 2.A of Huggins and Zou [73]
with 𝐶 = 1 and 𝜌 = 𝑒−𝜚. By Theorem 2 of Gorham et al. [62], it is not necessary
for the Lipschitz conditions in Assumption 2.A of Huggins and Zou [73] to hold.
Furthermore, it can easily be seen that 2.B(3) of Huggins and Zou [73] is not necessary
if both 𝜋𝒟 and 𝜋̃𝒟 are strongly convex. The remaining portions of Assumption 2.B
of Huggins and Zou [73] are satisfied, however. Thus we can apply Theorem 3.4 from
Huggins and Zou [73], which yields

𝑑𝒲(𝜋𝒟, 𝜋̃𝒟) ≤ 𝜚−1𝜋𝒟(err) ≤ 𝜚−1(𝑎̄+𝑁𝑏𝜀),

where 𝜀 := 𝐵(𝑅, 𝛿1, 𝜆, 𝛽) +𝐵(𝑅,−𝛿1, 𝜆, 𝛽).

Lemma B.2.4. Under the conditions of Theorem B.2.3, the random variable ⟨𝑦𝑛x𝑛,𝜃⟩−
𝛿1 is (𝜆, 𝛽)-subexponential, where 𝜆2 := 4

(︁
1+𝛿2
𝜚
∨ 𝜎2

1

)︁
and 𝛽2 :=

2𝜎2
2

𝜚
.

Proof Let z𝑛 = 𝑦𝑛x𝑛. For |𝑠| ≤ 1/𝛽, we have

E[𝑒𝑠(⟨z𝑛,𝜃⟩−𝛿1)] = E[E[𝑒𝑠⟨z,𝜃−𝜃⟩ | z𝑛 = z]𝑒𝑠(⟨𝜃,z𝑛⟩−𝛿1)]

≤ E[𝑒𝑠
2‖z𝑛‖22/𝜚′𝑒𝑠(⟨𝜃,z𝑛⟩−𝛿1)] Assumption (H)

≤ 0.5E[𝑒2𝑠
2‖z𝑛‖22/𝜚′ + 𝑒2𝑠(⟨𝜃,z𝑛⟩−𝛿1)] AM-GM inequality

≤ 0.5[𝑒4𝑠
4𝜎2

2/𝜚
2+2𝑠2𝛿2/𝜚 + 𝑒2𝑠

2𝜎2
1 ] subgaussianity

≤ 0.5[𝑒2𝑠
2(1+𝛿2)/𝜚 + 𝑒2𝑠

2𝜎2
1 ] bound on |𝑠|

≤ 𝑒𝑠
2𝜆2/2.

Corollary B.2.5. Let 𝜑2 be the second-order Chebyshev approximation to 𝜑logit on
[−𝑅,𝑅] and let 𝜋̃𝒟(𝜃) = N(𝜃 |𝜃MAP, Σ̃) denote the posterior approximation obtained
by using 𝜑2 with a Gaussian prior 𝜋0(𝜃) = N(𝜃 |𝜃0,Σ0). Let 𝜃 :=

∫︀
𝜃𝜋𝒟(d𝜃), let

𝛿1 := 𝑁−1
∑︀𝑁

𝑛=1⟨𝑦𝑛x𝑛,𝜃⟩, and let 𝜎1 be the subgaussanity constant of the random
variable ⟨𝑦𝑛x𝑛,𝜃⟩ − 𝛿1, where 𝑛 ∼ Unif{1, . . . , 𝑁}. Assume that |𝛿1| ≤ 𝑅, that
‖Σ̃‖2 ≤ 𝑐𝑑/𝑁 , and that ‖x𝑛‖2 ≤ 1 for all 𝑛 = 1, . . . , 𝑁 . Then with 𝜎2

0 := ‖Σ0‖2, we
have

𝑑𝒲(𝜋𝒟, 𝜋̃𝒟) ≤ 𝑐𝑑

(︂
𝑎(𝑅) +

√
2 𝜎0𝑒

8(2+𝜎2
1𝜎

−2
0 )−

√
2

𝑅−|𝛿1|
𝜎0

)︂
,
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where 𝑎(𝑅) is bounded by

min
𝑟∈(1,𝜋/𝑅+

√
𝜋2/𝑅2+1 )

⃒⃒⃒
log
(︁

1 + 𝑒−
1
2
𝑅(𝑟−𝑟−1)i

)︁⃒⃒⃒(𝑟 + 1)(9𝑟2 + 7𝑟 + 2)

𝑟2(𝑟 − 1)4
.

Proof Assumption (E) holds by construction. The bound on

𝑎(𝑅) := sup
𝑠∈[−𝑅,𝑅]

|𝜑′
logit(𝑠)− 𝜑′

2(𝑠)|

follows immediately from Corollary B.1.4 in the case of 𝑀 = 2. Furthermore, since
𝜑′
2(𝑠) = 𝑏1,1 + 𝑏1,2𝑠, for |𝑠| > 𝑅, the additional error is at most |𝑏1,2|(|𝑠| − 𝑅). In the

case of a Chebyshev approximation, it is easy to verify that |𝑏1,2| ≤ 0.25 for all 𝑅
(since as 𝑅→ 0, 𝑏1,2 → 𝜑′′

logit(0) = −0.25 and −𝑏1,2 is a decreasing function of 𝑅). In
short, |𝜑′

logit(𝑠)−𝜑′
2(𝑠)| ≤ 𝑎(𝑅)+0.25 max(0, |𝑠|−𝑅) and therefore, using Assumption

(F), we have

‖∇𝜃𝜑(⟨𝑦𝑛x𝑛,𝜃⟩)−∇𝜃𝜑𝑀(⟨𝑦𝑛x𝑛,𝜃⟩)‖2
= ‖𝜑′(⟨𝑦𝑛x𝑛,𝜃⟩)𝑦𝑛x𝑛 − 𝜑′

𝑀(⟨𝑦𝑛x𝑛,𝜃⟩)𝑦𝑛x𝑛‖2
≤ 𝑎(𝑅) + .25 max(0, |⟨𝑦𝑛x𝑛,𝜃⟩| −𝑅).

Hence Assumption (G) holds with 𝑎𝑛 = 𝑎(𝑅) and 𝑏 = 0.25.
Now, clearly − log 𝜋𝒟 is 𝜎−2

0 -strongly convex. Since ‖x𝑛‖2 ≤ 1, conclude that
𝛿2 ≤ 1 and 𝜎2 ≤ 1/2. To upper bound 𝜀, note that

𝐵(𝑅, 𝛿1, 𝜆, 𝛽) +𝐵(𝑅,−𝛿1, 𝜆, 𝛽) ≤ 2𝐵(𝑅, |𝛿1|, 𝜆, 𝛽)

and that 𝑝(𝑡, 𝜆, 𝛽) ≤ 𝑒
𝜆2

4𝛽2 𝑒−𝑡/𝛽. Also, 𝜆2 ≤ 4(2𝜎2
0 + 𝜎2

1) and 𝛽2 = 𝜎2
0/2. Using this

upper bound in 𝐵(𝑅, |𝛿1|, 𝜆, 𝛽) along with straightforward simplifications yields:

2𝐵(𝑅, |𝛿1𝑎|, 𝜆, 𝛽) ≤ 2𝛽𝑒
𝜆2

4𝛽2 𝑒−
𝑅−|𝛿1|

𝛽 ≤
√

2 𝜎0𝑒
8(2+𝜎2

1𝜎
−2
0 )𝑒

−
√
2

𝑅−|𝛿1|
𝜎0 .

The result now follows from Theorem B.2.3 since − log 𝜋̃𝒟 is ‖Σ̃‖−1
2 -strongly convex

and hence by assumption 𝑁/(𝑐𝑑)-strongly convex.

Corollary B.2.6. Let 𝑓𝑀(𝑠) be the order-𝑀 Chebyshev approximation to 𝑒𝑡 on the
interval [−𝑅,𝑅], and let 𝜋̃𝒟(𝜃) denote the posterior approximation obtained by us-
ing the approximation log 𝑝(𝑦𝑛 |x𝑛,𝜃) := 𝑦𝑛x𝑛 · 𝜃 − 𝑓𝑀(x𝑛 · 𝜃)− log 𝑦𝑛! with a log-
concave prior on Θ = B𝑅(0). If inf𝑠∈[−𝑅,𝑅] 𝑓

′′
𝑀(𝑠) ≥ 𝜚 > 0 and ‖x𝑛‖2 ≤ 1 for all

𝑛 = 1, . . . , 𝑁 , then with 𝜏 := ‖
∑︀𝑁

𝑛=1 x𝑛x
⊤
𝑛 ‖2, we have

𝑑𝒲(𝜋𝒟, 𝜋̃𝒟) ≤ 𝑁

𝜚𝜏
min
𝑟>1

𝑒
1
2
𝑅(𝑟+𝑟−1) (𝑟 + 1)[𝑀2𝑟(𝑟 + 1) +𝑀(2𝑟2 + 𝑟 + 1) + 𝑟(𝑟 + 1)]

𝑟𝑀(𝑟 − 1)4
.

Note that inf𝑠∈[−𝑅,𝑅] 𝑓
′′
𝑀(𝑠) ≥ 𝜚 > 0 holds as long as𝑀 is even and sufficiently large.
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Proof Since by hypothesis inf𝑠∈[−𝑅,𝑅] 𝑓
′′
𝑀(𝑠) ≥ 𝜚 > 0, the prior is log-concave, and

− log 𝜋̃𝒟 is 𝜚𝜏 -strongly convex (i.e., Assumption (E) holds). Using Assumption (F),
we have

‖∇𝜃 log 𝑝(𝑦𝑛 |x𝑛,𝜃)−∇𝜃 log 𝑝(𝑦𝑛 |x𝑛,𝜃)‖2
= ‖𝑒⟨𝑦𝑛x𝑛,𝜃⟩)𝑦𝑛x𝑛 − 𝑓 ′

𝑀(⟨𝑦𝑛x𝑛,𝜃⟩)𝑦𝑛x𝑛‖2
≤ sup

𝑠∈[−𝑅,𝑅]

|𝑒−𝑠 − 𝑓 ′
𝑀(𝑠)| =: 𝑎(𝑅).

which is bounded according to Corollary B.1.5. Hence Assumption (G) holds with
𝑎𝑛 = 𝑎(𝑅) and 𝑏 = 0. The result now follows immediately from Theorem B.2.3.
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Appendix C

Chapter 4 Proofs

C.1 Exponential contractivity

A natural generalization of the strong concavity case is to assume that log 𝜋 is strongly
concave for 𝑥 and 𝑥′ far apart and that log 𝜋 has “bounded convexity” when 𝑥 and 𝑥′
are close together. It turns out that in such cases Assumption 4.A still holds. More
formally, the following assumption can be used even when the drift is not a gradient.
For 𝑓 : 𝒳 → R𝑑 and 𝑟 > 0, let

𝜅(𝑟) := inf

{︂
−2

(𝑓(𝑥)− 𝑓(𝑥′)) · (𝑥− 𝑥′)
𝑟2

: 𝑥, 𝑥′ ∈ 𝒳 , ‖𝑥− 𝑥′‖2 = 𝑟

}︂
.

Define the constant 𝑅0 = inf{𝑅 ≥ 0 : 𝜅(𝑟) ≥ 0 ∀𝑟 ≥ 𝑅}.

Assumption A.9 (Strongly log-concave tails). For the function 𝑓 ∈ 𝐶1(𝒳 ,R𝑑), there
exist constants 𝑅, ℓ ∈ [0,∞) and 𝑘 ∈ (0,∞) such that

𝜅(𝑟) ≥ −ℓ for all 𝑟 ≤ 𝑅 and 𝜅(𝑟) ≥ 𝑘 for all 𝑟 > 𝑅.

Furthermore, 𝜅(𝑟) is continuous and
∫︀ 1

0
𝑟𝜅(𝑟)−d𝑟 <∞.

Theorem C.1.1 (Eberle [46], Wang [140]). If Assumption A.9 holds for 𝑓 = 𝑏 then
Assumption 4.A holds for

𝐶 = exp

(︂
1

4

∫︁ 𝑅0

0

𝑟𝜅(𝑟)d𝑠

)︂
1

log(1/𝜌)
≤

{︃
3𝑒
2

max(𝑅2, 8𝑘−1) if ℓ𝑅2
0 ≤ 8

8
√

2𝜋 𝑅−1ℓ−1/2(ℓ−1 + 𝑘−1)𝑒ℓ𝑅
2/8 + 32𝑅−2𝑘−2 otherwise.

For detailed calculations for the case of a mixture of Gaussians model, see Gorham
et al. [62].
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C.2 Proofs of the main results in Section 4.2
We state all our results in the more general case of a diffusion on a convex space
𝒳 ⊆ R𝑑. We begin with some additional definitions. Any set 𝒢 ⊆ 𝐶(𝒳 ) defines an
integral probability metric (IPM)

𝑑𝒢(𝜇, 𝜈) = sup
𝜑∈𝒢
|𝜇(𝜑)− 𝜈(𝜑)|,

where 𝜇 and 𝜈 are measures on 𝒳 . The Wasserstein metric 𝑑𝒲 corresponds to
𝒲 := {𝜑 ∈ 𝐶(𝒳 ) | ‖𝜑‖𝐿 ≤ 1}. The set ℋ := {𝜑 ∈ 𝐶1(𝒳 ) | ‖ℎ‖𝐿 ≤ 1} will be used to
define an IPM 𝑑ℋ. For a set 𝒵 ⊆ R𝑛, we use 𝜕𝒵 to denote the boundary of 𝒵.

Suppose ‖𝑏 − 𝑏̃‖2 ≤ 𝜖. We first state several standard properties of the Wasser-
stein metric and invariant measures of diffusions. The proofs are included here for
completeness.

Lemma C.2.1. For any 𝜇, 𝜈 ∈ 𝒫(𝒳 ), 𝑑ℋ(𝜇, 𝜈) = 𝑑𝒲(𝜇, 𝜈).

Proof [Proof sketch] The result follows since any Lipschitz function is continuous
and a.e.-differentiable, and continuously differentiable functions are dense in the class
of continuous and a.e.-differentiable functions.

We use the notation (𝑋𝑡)𝑡≥0 ∼ Diff(𝑏,Σ) if 𝑋𝑡 is a diffusion defined by

d𝑋𝑡 = 𝑏(𝑋𝑡) d𝑡+ Σd𝑊𝑡 − 𝑛𝑡𝐿(d𝑡).

A diffusion 𝑋𝑡 is said to be strong Feller if its semigroup operator (𝜋𝑡𝜑)(𝑥) :=
E[𝜑(𝑋𝑥,𝑡)], 𝜑 ∈ 𝐶(𝒳 ), satisfies the property that for all bounded 𝜑, 𝜋𝑡𝜑 is bounded
and continuous.

Proposition C.2.2. Assume Assumption 4.B(1) holds and let (𝑋𝑡)𝑡≥0 ∼ Diff(𝑏, 𝐼).
Then for each 𝑥 ∈ 𝒳 , 𝑋𝑥,𝑡 has the invariant density 𝜋 and is strong Feller.

Proof The existence of the diffusions follows from Tanaka [134, Theorem 4.1], the
strong Feller property follows from Ethier and Kurtz [48, Ch. 8, Theorems 1.5 & 1.6],
and the fact that 𝜋 is the unique stationary measure follows since 𝒜*

𝑏𝜋 = 0.

By the same proof as Proposition C.2.2, we have

Proposition C.2.3 (Diffusion properties). For 𝑓 ∈ 𝐶0(𝒳 ,R𝑑) with ‖𝑓‖𝐿 < ∞, the
diffusion (𝑋𝑡)𝑡≥0 ∼ Diff(𝑓, 𝐼) exists and has an invariant distribution 𝜋𝑓 .

Proposition C.2.4 (Expectation of the generator). For 𝑓 ∈ 𝐶0(𝒳 ,R𝑑), let the diffu-
sion (𝑋𝑡)𝑡≥0 ∼ Diff(𝑓, 𝐼) have invariant density 𝜋𝑓 and assume that linear functions
are 𝜋𝑓 -integrable. Then for all 𝜑 ∈ 𝐶2(𝒳 ) such that ‖𝜑‖𝐿 < ∞ and 𝒜𝑓𝜑 is 𝜋𝑓 -
integrable, 𝜋𝑓 (𝒜𝑓𝜑) = 0.

Proof Let 𝑃𝑡 be the semigroup operator associated with (𝑋𝑡)𝑡≥0:

(𝑃𝑡𝜑)(𝑥) = E[𝜑(𝑋𝑥,𝑡)].
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Since by hypothesis linear functions are 𝜋𝑓 -integrable and 𝜑 is Lipschitz, 𝜑 is 𝜋𝑓 -
integrable. Thus, 𝑃𝑡𝜑 is 𝜋𝑓 -integrable and by the definition of an invariant measure
(see [12, Definition 1.2.1] and subsequent discussion),

𝜋𝑓 (𝑃𝑡𝜑) = 𝜋𝑓𝜑. (C.2.1)

Using the fact that 𝜕𝑡𝑃𝑡 = 𝑃𝑡𝒜𝑓 [12, Eq. (1.4.1)], differentiating both size of Eq. (C.2.1),
applying dominated convergence, and using the hypothesis that 𝒜𝑓𝜑 is 𝜋𝑓 -integrable
yields

0 = 𝜕𝑡𝜋𝑓 (𝑃𝑡𝜑) = 𝜋𝑓 (𝜕𝑡𝑃𝑡𝜑) = 𝜋𝑓 (𝑃𝑡𝒜𝑓𝜑) = 𝜋𝑓 (𝒜𝑓𝜑).

We next show that the solution to Eq. (4.7) is Lipschitz continuous with a Lipschitz
constant depending on the mixing properties of the diffusion associated with the
generator.

Proposition C.2.5 (Differential equation solution properties). If Assumptions 4.A
and 4.B(1) hold, then for any ℎ ∈ 𝐶1(𝒳 ) with ‖ℎ‖𝐿 <∞, the function

𝑢ℎ(𝑥) :=

∫︁ ∞

0

(𝜋(ℎ)− E[ℎ(𝑋𝑥,𝑡)]) d𝑡

exists and satisfies

‖𝑢ℎ‖𝐿 ≤
𝐶

log(1/𝜌)
‖ℎ‖𝐿 (C.2.2)

(𝒜𝑏𝑢ℎ)(𝑥) = ℎ(𝑥)− 𝜋(ℎ). (C.2.3)

Proof We follow the approach of Mackey and Gorham [88]. By Assumption 4.A
and the definition of Wasserstein distance, we have that there is a coupling between
𝑋𝑥,𝑡 and 𝑋𝑥′,𝑡 such that

E[‖𝑋𝑥,𝑡 −𝑋𝑥′,𝑡‖2] ≤ 𝐶‖𝑥− 𝑥′‖2𝜌𝑡.

The function 𝑢ℎ is well-defined since for any 𝑥 ∈ 𝒳 ,∫︁ ∞

0

|𝜋(ℎ)− E[ℎ(𝑋𝑥,𝑡)]| d𝑡 =

∫︁ ∞

0

⃒⃒⃒⃒∫︁
𝒳

(E[ℎ(𝑋𝑥′,𝑡)]− E[ℎ(𝑋𝑥,𝑡)])𝜋(𝑥′) d𝑥′
⃒⃒⃒⃒
d𝑡

≤ sup
𝑧∈𝒳
‖∇ℎ(𝑧)‖2

∫︁ ∞

0

∫︁
𝒳
E[‖𝑋𝑥,𝑡 −𝑋𝑥′,𝑡‖2]𝜋(𝑥′) d𝑥′ d𝑡

= sup
𝑧∈𝒳
‖∇ℎ(𝑧)‖2

∫︁ ∞

0

∫︁
𝒳
‖𝑥− 𝑥′‖2𝐶𝜌𝑡𝜋(𝑥′) d𝑥′ d𝑡

≤ ‖ℎ‖𝐿 E𝑋∼𝜋[‖𝑥−𝑋‖2]
∫︁ ∞

0

𝐶𝜌𝑡 d𝑡
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<∞,

where the first line uses the property that 𝜋(ℎ) =
∫︀
𝒳 E[ℎ(𝑋𝑥′,𝑡)]𝜋(𝑥′)d𝑥′ and the

final inequality follows from Assumption 4.B(1) and the assumption that 0 < 𝜌 < 1.
Furthermore, 𝑢ℎ has bounded Lipschitz constant since for any 𝑥, 𝑥′ ∈ 𝒳 ,

|𝑢ℎ(𝑥)− 𝑢ℎ(𝑥′)| =
⃒⃒⃒⃒∫︁ ∞

0

E[ℎ(𝑋𝑥,𝑡)− ℎ(𝑋𝑥′,𝑡)] d𝑡

⃒⃒⃒⃒
≤ sup

𝑧∈𝒳
‖∇ℎ(𝑧)‖2

∫︁ ∞

0

E[‖𝑋𝑥,𝑡 −𝑋𝑥′,𝑡‖2] d𝑡

≤ ‖ℎ‖𝐿‖𝑥− 𝑥′‖2
∫︁ ∞

0

𝐶𝜌𝑡 d𝑡

=
𝐶‖ℎ‖𝐿

log(1/𝜌)
‖𝑥− 𝑥′‖2.

Finally, we show that (𝒜𝑏𝑢ℎ)(𝑥) = ℎ(𝑥) − 𝜋(ℎ). Recall that for ℎ ∈ 𝐶(𝒳 ), the
semigroup operator is given by (𝜋𝑡ℎ)(𝑥) = E[ℎ(𝑋𝑥,𝑡)]. Since 𝑋𝑥,𝑡 is strong Feller
for all 𝑥 ∈ 𝒳 by Proposition C.2.2, for all 𝑡 ≥ 0, its generator satisfies [48, Ch. 1,
Proposition 1.5]

ℎ− 𝜋𝑡ℎ = 𝒜𝑏

∫︁ 𝑡

0

(𝜋(ℎ)− 𝜋𝑠ℎ) d𝑠. (C.2.4)

Hence,

|ℎ(𝑥)− 𝜋(ℎ)− [ℎ(𝑥)− (𝜋𝑡ℎ)(𝑥)]|

=

⃒⃒⃒⃒∫︁
𝒳
E[ℎ(𝑋𝑥,𝑡)]− E[ℎ(𝑋𝑥′,𝑡)]𝜋(𝑥′) d𝑥′

⃒⃒⃒⃒
≤ sup

𝑧∈𝒳
‖∇ℎ(𝑧)‖2

∫︁
𝒳
E[‖𝑋𝑥′,𝑡 −𝑋𝑥,𝑡‖2]𝜋(𝑥′) d𝑥′

≤ ‖ℎ‖𝐿 E𝑋∼𝜋[‖𝑥−𝑋‖2]𝐶𝜌𝑡.

Thus, conclude that the left-hand side of Eq. (C.2.4) converges pointwise to ℎ(𝑥)−𝜋(ℎ)
as 𝑡 → ∞. Since 𝒜𝑏 is closed [48, Ch. 1, Proposition 1.6], the right-hand side of
Eq. (C.2.4) limits to 𝒜𝑏𝑢ℎ. Hence, 𝑢ℎ solves Eq. (C.2.3).

We can now prove the main result bounding the Wasserstein distance between the
invariant distributions of the original and perturbed diffusions.

Proof [Proof of Theorem 4.2.1] By Proposition C.2.3 and Assumption 4.B, the
hypotheses of Proposition C.2.4 hold for 𝑓 = 𝑏̃. Let ℱ := {𝑢ℎ |ℎ ∈ ℋ}. Then

𝑑𝒲(𝜋, 𝜋̃) = sup
ℎ∈ℋ
|𝜋(ℎ)− 𝜋̃(ℎ)| by definition and Assumption 4.B

= sup
ℎ∈ℋ
|𝜋(𝒜𝑏𝑢ℎ)− 𝜋̃(𝒜𝑏𝑢ℎ)| by Eq. (C.2.3)
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= sup
ℎ∈ℋ
|𝜋̃(𝒜𝑏𝑢ℎ)| by Proposition C.2.4

= sup
𝑢∈ℱ
|𝜋̃(𝒜𝑏𝑢)| by definition of ℱ

= sup
𝑢∈ℱ
|𝜋̃(𝒜𝑏𝑢−𝒜𝑏̃𝑢)| by Proposition C.2.4

= sup
𝑢∈ℱ
|𝜋̃(∇𝑢 · 𝑏−∇𝑢 · 𝑏̃)| by definition of 𝒜𝑏

≤ sup
𝑢∈ℱ
|𝜋̃(‖∇𝑢‖2‖𝑏− 𝑏̃)‖2)|

≤ 𝐶𝜖

log(1/𝜌)
by Eq. (C.2.2) and ‖𝑏− 𝑏̃‖2 ≤ 𝜖.

A similar analysis can be used to bound the Wasserstein distance between 𝜋 and
𝜋̃ when the approximate drift 𝑏̃ is itself stochastic.
Proof [Proof of Theorem 4.2.4] We will need to consider the joint diffusions 𝑍𝑡 =
(𝑋𝑡, 𝑌𝑡) and 𝑍𝑡 = (𝑋̃𝑡, 𝑌𝑡) on 𝒵 := 𝒳 × R𝑑, where

d𝑍𝑡 = (𝑏(𝑋𝑡), 𝑏𝑎𝑢𝑥(𝑌𝑡)) d𝑡+ (
√

2 d𝑊𝑋
𝑡 ,Σ d𝑊 𝑌

𝑡 )− 𝑛𝑡𝐿(d𝑡)

d𝑍𝑡 = (𝑏̃(𝑋̃𝑡, 𝑌𝑡), 𝑏𝑎𝑢𝑥(𝑌𝑡)) d𝑡+ (
√

2 d𝑊̃𝑋
𝑡 ,Σ d𝑊̃ 𝑌

𝑡 )− 𝑛𝑡𝐿̃(d𝑡).

Notice that 𝑋𝑡 and 𝑌𝑡 are independent and the invariant distribution of 𝑋𝑡 is 𝜋. Let
𝜋𝑍 and 𝜋̃𝑍 be the invariant distributions of 𝑍𝑡 and 𝑍𝑡, respectively. Also note that
the generators for 𝑍𝑡 and 𝑍𝑡 are, respectively,

𝒜𝑍𝜑(𝑧) = ∇𝜑 · (𝑏(𝑥), 𝑏𝑎𝑢𝑥(𝑦)) + ∆𝜑𝑥(𝑧) + Σ⊤Σ : ∇2𝜑𝑦(𝑧)

𝒜𝑍𝜑(𝑧) = ∇𝜑 · (𝑏̃(𝑥, 𝑦), 𝑏𝑎𝑢𝑥(𝑦)) + ∆𝜑𝑥(𝑧) + Σ⊤Σ : ∇2𝜑𝑦(𝑧).

where ∇2 is the Hessian operator.
By Proposition C.2.3 and 4.B, the hypotheses of Proposition C.2.4 hold for 𝑓(𝑥, 𝑦) =

(𝑏̃(𝑥, 𝑦), 𝑏𝑎𝑢𝑥(𝑦)). Let ℋ𝑍 := {ℎ ∈ 𝐶1(𝒵) | ‖ℎ‖𝐿 ≤ 1} and ℱ𝑍 := {𝑢ℎ |ℎ ∈ ℋ𝑍}. Also,
for 𝑧 = (𝑥, 𝑦) ∈ 𝒵, let id𝑌 (𝑧) = 𝑦. Then, by reasoning analogous to that in the proof
of Theorem 4.2.1,

𝑑𝒲(𝜋, 𝜋̃) ≤ 𝑑𝒲(𝜋𝑍 , 𝜋̃𝑍)

= sup
ℎ∈ℋ𝑍

|𝜋𝑍(ℎ)− 𝜋̃𝑍(ℎ)|

= sup
𝑢∈ℱ𝑍

|𝜋̃𝑍(𝒜𝑍𝑢−𝒜𝑍𝑢)|

= sup
𝑢∈ℱ𝑍

|𝜋̃𝑍(∇𝑢 · 𝑏−∇𝑢 · 𝑏̃)|

= sup
𝑢∈ℱ𝑍

|E[∇𝑢(𝑋̃, 𝑌 ) · E[𝑏(𝑋̃)− 𝑏̃(𝑋̃, 𝑌 ) | 𝑋̃]]|

≤ sup
𝑢∈ℱ𝑍

|E[‖∇𝑢(𝑋̃, 𝑌 )‖2‖E[𝑏(𝑋̃)− 𝑏̃(𝑋̃, 𝑌 ) | 𝑋̃]‖2]|
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≤ 𝐶 𝜋̃(𝜖)

log(1/𝜌)
.

Proof [Proof of Theorem 4.2.5] The proof is very similar to that of Theorem 4.2.1,
the only difference is in the Lipshitz coefficient of the differential equation solution
𝑢ℎ(𝑥) in C.2.5. Using polynomial contractivity, we have

|𝑢ℎ(𝑥)− 𝑢ℎ(𝑥′)| =
⃒⃒⃒⃒∫︁ ∞

0

E[ℎ(𝑋𝑥,𝑡)− ℎ(𝑋𝑥′,𝑡)] d𝑡

⃒⃒⃒⃒
≤ sup

𝑧∈𝒳
‖∇ℎ(𝑧)‖2

∫︁ ∞

0

E[‖𝑋𝑥,𝑡 −𝑋𝑥′,𝑡‖2] d𝑡

≤ ‖ℎ‖𝐿‖𝑥− 𝑥′‖2
∫︁ ∞

0

𝐶(𝑡+ 𝛽)−𝛼 d𝑡

=
𝐶‖ℎ‖𝐿

(𝛼− 1)𝛽𝛼−1
‖𝑥− 𝑥′‖2.

Plugging in this Lipschitz constant, we have

𝑑𝒲(𝜋, 𝜋̃) ≤ 𝐶𝜖

(𝛼− 1)𝛽𝛼−1
.

C.3 Checking the Integrability Condition

The following result gives checkable conditions under which Assumption 4.B(3) holds.
Let B𝑅 := {𝑥 ∈ R𝑑 | ‖𝑥‖2 ≤ 𝑅}.

Proposition C.3.1 (Ensuring integrability). Assumption 4.B(3) is satisfied if 𝑏 =
∇ log 𝜋, 𝑏̃ = ∇ log 𝜋̃, ‖𝑏− 𝑏̃‖2 ≤ 𝜖, and either

1. there exist constants 𝑅 > 0, 𝐵 > 0, 𝛿 > 0 such that for all 𝑥 ∈ 𝒳 ∖ B𝑅, ‖𝑏(𝑥)−
𝑏̃(𝑥)‖2 ≤ 𝐵/‖𝑥‖1+𝛿

2 ; or

2. there exists a constant 𝑅 > 0 such that for all 𝑥 ∈ 𝒳 ∖B𝑅, 𝑥 · (𝑏(𝑥)− 𝑏̃(𝑥)) ≥ 0.

Proof For case (1), first we note that since
∫︀
𝒳 (𝜋(𝑥)− 𝜋̃(𝑥)) d𝑥 = 0, by the (gener-

alized) intermediate value theorem, there exists 𝑥* ∈ 𝒳 such that 𝜋(𝑥*)− 𝜋̃(𝑥*) = 0,
and hence log 𝜋(𝑥*) − log 𝜋̃(𝑥*) = 0. Let 𝑝[𝑥*, 𝑥] be any path from 𝑥* to 𝑥. By the
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fundamental theorem of calculus for line integrals,

| log 𝜋(𝑥)− log 𝜋̃(𝑥)| =
⃒⃒⃒
log 𝜋̃(𝑥*)− log 𝜋(𝑥*) +

∫︁
𝛾[𝑥*,𝑥]

(𝑏(𝑟)− 𝑏̃(𝑟)) · d𝑟
⃒⃒⃒

=
⃒⃒⃒ ∫︁

𝛾[𝑥*,𝑥]

(𝑏(𝑟)− 𝑏̃(𝑟)) · 𝑟′(𝑡) d𝑡
⃒⃒⃒

≤
∫︁
𝛾[𝑥*,𝑥]

‖𝑏(𝑟)− 𝑏̃(𝑟)‖2‖𝑟′(𝑡)‖2 d𝑡.

First consider 𝑥 ∈ 𝒳 ∩ B𝑅. Choosing 𝑝[𝑥*, 𝑥] to be the linear path 𝛾[𝑥*, 𝑥], we have

| log 𝜋(𝑥)− log 𝜋̃(𝑥)| ≤ 𝜖

∫︁
𝛾[𝑥*,𝑥]

‖𝑟′(𝑡)‖2 d𝑡

= 𝜖‖𝑥− 𝑥*‖2
≤ (𝑅 + ℓ*)𝜖, (C.3.1)

where ℓ* := ‖𝑥*‖2.

Next consider 𝑥 ∈ 𝒳 ∖ B𝑅. Let ℓ := ‖𝑥‖2 and 𝑥′ = 𝑅
ℓ
𝑥. Choose 𝑝[𝑥*, 𝑥] to consist

of the concatenation of the linear paths 𝛾[𝑥*, 0], 𝛾[0, 𝑥′], and 𝛾[𝑥′, 0], so∫︁
𝑝[𝑥*,𝑥]

‖𝑏(𝑟)− 𝑏̃(𝑟)‖2‖𝑟′(𝑡)‖2 d𝑡

=

∫︁
𝛾[𝑥*,0]

‖𝑏(𝑟)− 𝑏̃(𝑟)‖2‖𝑟′(𝑡)‖2 d𝑡+

∫︁
𝛾[0,𝑥′]

‖𝑏(𝑟)− 𝑏̃(𝑟)‖2‖𝑟′(𝑡)‖2 d𝑡

+

∫︁
𝛾[𝑥′,𝑥]

‖𝑏(𝑟)− 𝑏̃(𝑟)‖2‖𝑟′(𝑡)‖2 d𝑡.

Now, we bound each term:∫︁
𝛾[𝑥*,0]

‖𝑏(𝑟)− 𝑏̃(𝑟)‖2‖𝑟′(𝑡)‖2 d𝑡 ≤ ℓ*𝜖∫︁
𝛾[0,𝑥′]

‖𝑏(𝑟)− 𝑏̃(𝑟)‖2‖𝑟′(𝑡)‖2 d𝑡 ≤ 𝑅𝜖∫︁
𝛾[𝑥′,𝑥]

‖𝑏(𝑟)− 𝑏̃(𝑟)‖2‖𝑟′(𝑡)‖2 d𝑡 ≤ (ℓ−𝑅)𝐵

∫︁ 1

0

1

(𝑅 + (ℓ−𝑅)𝑡)1+𝛿

= (ℓ−𝑅)𝐵

[︂
1

(ℓ−𝑅)𝑅𝛿
− 1

(ℓ−𝑅)ℓ𝛿

]︂
≤ 𝐵

𝑅𝛿
.

It follows that there exists a constant 𝐵̃ > 0 such that for all 𝑥 ∈ 𝒳 , | log 𝜋(𝑥) −
log 𝜋̃(𝑥)| < 𝐵̃. Hence 𝐵̃−1𝜋 < 𝜋̃ < 𝐵̃𝜋, so 𝜑 is 𝜋-integrable if and only if it is
𝜋̃-integrable.
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Case (2) requires a slightly more delicate argument. Let 𝑥* and ℓ* be the same as
in case (1). For 𝑥 ∈ 𝒳 ∩ B𝑅, it follows from Eq. (C.3.1) that

log 𝜋(𝑥)− log 𝜋̃(𝑥) ≥ −(𝑅 + ℓ*)𝜖.

For 𝑥 ∈ 𝒳 ∖ B𝑅, arguing as above yields

log 𝜋(𝑥)− log 𝜋̃(𝑥) =

∫︁
𝑝[𝑥*,𝑥]

(𝑏(𝑟)− 𝑏̃(𝑟)) · d𝑟

≥ −
∫︁
𝑝[𝑥*,𝑟′]

‖𝑏(𝑟)− 𝑏̃(𝑟)‖2‖𝑟′(𝑡)‖2 d𝑡

+

∫︁
𝛾[𝑥′,𝑥]

(𝑏(𝑟)− 𝑏̃(𝑟)) · 𝑟′(𝑡) d𝑡

≥ −(𝑅 + ℓ*)𝜖+

∫︁
𝛾[𝑥′,𝑥]

(𝑏(𝑞(𝑡)𝑥)− 𝑏̃(𝑞(𝑡)𝑥)) · 𝑎𝑥 d𝑡

≥ −(𝑅 + ℓ*)𝜖,

where we have used the fact that 𝑟(𝑡) = 𝑞(𝑡)𝑥 for some linear function 𝑞(𝑡) with
slope 𝑎 > 0. Combining the previous two displays, conclude that for all 𝑥 ∈ 𝒳 ,
𝜋̃(𝑥) ≤ 𝑒(𝑅+ℓ*)𝜖𝜋(𝑥), hence Assumption 4.B(3) holds.

We suspect Proposition C.3.1 continues to hold even when 𝑏 ̸= ∇ log 𝜋 and 𝑏̃ ̸=
∇ log 𝜋̃. Note that condition (1) always holds if 𝒳 is compact, but also holds for
unbounded 𝒳 as long as the error in the gradients decays sufficiently quickly as ‖𝑥‖2
grows large. Given an approximate distribution for which ‖𝑏 − 𝑏̃‖2 ≤ 𝜖/2, it is easy
to construct a new distribution that satisfies condition (2):

Proposition C.3.2. Assume that 𝜋̃ satisfies ‖𝑏− 𝑏̃‖2 ≤ 𝜖/2 and let

𝑓𝑅(𝑥) := − 𝜖𝑥

2‖𝑥‖2
{(2‖𝑥‖2/𝑅− 1)1[𝑅/2 ≤ ‖𝑥‖2 < 𝑅] + 1[‖𝑥‖2 ≥ 𝑅]}.

Then the distribution

𝜋̃𝑅(𝑥) ∝ 𝜋̃(𝑥)𝑒𝑓𝑅(𝑥)

satisfies condition (2) of Proposition C.3.1.

Proof Let 𝑏̃𝑅 := ∇ log 𝜋̃𝑅. First we verify that ‖𝑏 − 𝑏̃𝑅‖2 ≤ 𝜖. For 𝑥 ∈ 𝒳 ∩ B𝑅/2,
𝜋̃𝑅(𝑥) = 𝜋̃(𝑥), so ‖𝑏(𝑥)− 𝑏̃𝑅(𝑥)‖2 ≤ 𝜖/2. Otherwise 𝑥 ∈ 𝒳 ∖B𝑅/2, in which case since
‖𝑓𝑅(𝑥)‖ ≤ 𝜖/2 it follows that ‖𝑏(𝑥)− 𝑏̃𝑅(𝑥)‖2 ≤ 𝜖. To verify condition (2), calculate
that for 𝑥 ∈ 𝒳 ∖ B𝑅,

𝑥 · (𝑏(𝑥)− 𝑏̃𝑅(𝑥)) = 𝑥 ·
(︂
𝑏(𝑥)− 𝑏̃(𝑥)− 𝜖𝑥

2‖𝑥‖2

)︂
≥ 𝜖‖𝑥‖2

2
− 𝑥 · 𝜖𝑥

2‖𝑥‖2
= 0.
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By taking 𝑅 very large in Proposition C.3.2, we can ensure the integrability con-
dition holds without having any practical effect on the approximating drift since
𝑏̃𝑅(𝑥) = 𝑏̃(𝑥) for all 𝑥 ∈ B𝑅/2. Thus, it is safe to view Assumption 4.B(3) as a mild
regularity condition.

C.4 Approximation Results for Piecewise Determin-
istic Markov Processes

In the section we obtain results for a broader class of PDMPs which includes the
ZZP a special case [16]. The class of PDMPs we consider are defined on the space
𝐸 := R𝑑×ℬ, where ℬ is a finite set. Let 𝐴 ∈ 𝐶0(𝐸,Rℬ

+) and let 𝐹 ∈ 𝐶0(𝐸,R𝑑) be such
that for each 𝜃 ∈ ℬ, 𝐹 (·, 𝜃) is a smooth vector field for which the differential equation
𝜕𝑡𝑥𝑡 = 𝐹 (𝑥𝑡, 𝜃) with initial condition 𝑥0 = 𝑥 has a unique global solution. For 𝜑 ∈
𝐶(𝐸), the standard differential operator ∇𝑥𝜑(𝑥, 𝜃) ∈ R𝑑 is given by (∇𝑥𝜑(𝑥, 𝜃))𝑖 :=
𝜕𝜑
𝜕𝑥𝑖

(𝑥, 𝜃) for 𝑖 ∈ [𝑑] and the discrete differential operator ∇𝜃𝜑(𝑥, 𝜃) ∈ Rℬ is given by
(∇𝜃𝜑(𝑥, 𝜃))𝜃′ := 𝜑(𝑥, 𝜃′) − 𝜑(𝑥, 𝜃). The PDMP (𝑋𝑡,Θ𝑡)𝑡≥0 determined by the pair
(𝐹,𝐴) has infinitesimal generator

𝒜𝐹,𝐴𝜑 = 𝐹 · ∇𝑥𝜑+ 𝐴 · ∇𝜃𝜑.

We consider the cases when either or both of 𝐴 and 𝐹 are approximated (in the
case of ZZP, only 𝐴 is approximated while 𝐹 is exact). The details of the polynomial
contractivity condition depend on which parts of (𝐹,𝐴) are approximated. We use the
same notation for the true and approximating PDMPs with, respectively, infinitesimal
generators 𝒜𝐹,𝐴 and 𝒜𝐹 ,𝐴, as we did for the ZZPs in Section 4.5.

Assumption D.10 (PDMP error and polynomial contractivity).

1. There exist 𝜖𝐹 , 𝜖𝐴 ≥ 0 such that ‖𝐹 − 𝐹‖2 ≤ 𝜖𝐹 and ‖𝐴− 𝐴‖1 ≤ 𝜖𝐴.

2. For each (𝑥, 𝜃) ∈ 𝐸, let 𝜇𝑥,𝜃,𝑡 denote the law of the PDMP (𝑋𝑥,𝜃,𝑡,Θ𝑥,𝜃,𝑡) with
generator 𝒜𝐹,𝐴. There exist constants 𝛼 > 1 and 𝛽 > 0 and a function 𝐵 ∈
𝐶(𝐸 × 𝐸,R+) such that for all 𝑥, 𝑥′ ∈ R𝑑 and 𝜃, 𝜃′ ∈ ℬ,

𝑑𝒲(𝜇𝑥,𝜃,𝑡, 𝜇𝑥′,𝜃′,𝑡) ≤ 𝐵(𝑥, 𝜃, 𝑥′, 𝜃′)(𝑡+ 𝛽)−𝛼.

Furthermore, if 𝜖𝐹 > 0, then there exists 𝐶𝐹 > 0 such that 𝐵(𝑥, 𝜃, 𝑥′, 𝜃) ≤
𝐶𝐹‖𝑥−𝑥′‖2 and if 𝜖𝐴 > 0, then there exists 𝐶𝐴 > 0 such that 𝐵(𝑥, 𝜃, 𝑥, 𝜃′) ≤ 𝐶𝐴.
If 𝜖𝐹 = 0 take 𝐶𝐹 = 0 and if 𝜖𝐴 = 0 take 𝐶𝐴 = 0.

We also require some regularity conditions similar to those for diffusions.

Assumption D.11 (PDMP regularity conditions). Let 𝜋 and 𝜋̃ denote the sta-
tionary distributions of the PDMPs with, respectively, infinitesimal generators 𝒜𝐹,𝐴

and 𝒜𝐹 ,𝐴.

109



1. The stationary distributions 𝜋 and 𝜋̃ exist.

2. The target density satisfies
∫︀
𝐸
𝑥2𝜋(d𝑥, d𝜃) <∞.

3. If a function 𝜑 ∈ 𝐶(𝐸,R) is 𝜋-integrable then it is 𝜋̃-integrable.

Theorem C.4.1 (PDMP error bounds). If Assumptions D.10 and D.11 hold, then

𝑑𝒲(𝜋, 𝜋̃) ≤ 𝐶𝐹 𝜖𝐹 + 𝐶𝐴𝜖𝐴
(𝛼− 1)𝛽𝛼−1

.

Proof [Proof sketch] For ℎ ∈ 𝐶𝐿(R𝑑), we need to solve

ℎ− 𝜋(ℎ) = 𝒜𝐹,𝐴𝑢.

Similarly to before, the solution is

𝑢ℎ(𝑥, 𝜃) :=

∫︁ ∞

0

(𝜋(ℎ)− E[ℎ(𝑋𝑥,𝜃,𝑡)]) d𝑡,

which can be verified as in the diffusion case using Assumptions D.10(2) and D.11.
Furthermore, for 𝑥, 𝑥′ ∈ R𝑑 and 𝜃, 𝜃′ ∈ ℬ, by Assumption D.10(2),

|𝑢ℎ(𝑥, 𝜃)− 𝑢ℎ(𝑥′, 𝜃)| ≤ ‖ℎ‖𝐿
∫︁ ∞

0

𝐶𝐹‖𝑥− 𝑥′‖2(𝑡+ 𝛽)−𝛼 d𝑡

=
𝐶𝐹‖ℎ‖𝐿

(𝛼− 1)𝛽𝛼−1
‖𝑥− 𝑥′‖2

and

|𝑢ℎ(𝑥, 𝜃)− 𝑢ℎ(𝑥, 𝜃′)| ≤ ‖ℎ‖𝐿
∫︁ ∞

0

𝐶𝐴(𝑡+ 𝛽)−𝛼 d𝑡 =
𝐶𝐴‖ℎ‖𝐿

(𝛼− 1)𝛽𝛼−1
.

We bound 𝑑𝒲(𝜋, 𝜋̃) as in Theorem 4.2.4, but now using the fact that for 𝑢 = 𝑢ℎ,
ℎ ∈ 𝐶𝐿(R𝑑), we have

𝒜𝐹,𝐴𝑢ℎ −𝒜𝐹 ,𝐴𝑢ℎ = (𝐹 − 𝐹 ) · ∇𝑥𝑢ℎ + (𝐴− 𝐴) · ∇𝜃𝑢ℎ

≤ ‖𝐹 − 𝐹‖2‖∇𝑥𝑢ℎ‖2 + ‖𝐴− 𝐴‖1‖∇𝜃𝑢ℎ‖∞

≤ 𝐶𝐹 𝜖𝐹 + 𝐶𝐴𝜖𝐴
(𝛼− 1)𝛽𝛼−1

.

C.4.1 Hamiltonian Monte Carlo

We can write an idealized form of Hamiltonian Monte Carlo (HMC) as a PDMP
(𝑋𝑡, 𝑃𝑡)𝑡≥0 by having the momentum vector 𝑃𝑡 ∈ R𝑑 refresh at a constant rate 𝜆.
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Let 𝑅𝑡 be a compound Poisson process with rate 𝜆 > 0 and jump size distribution
N(0,𝑀), where 𝑀 ∈ R𝑑×𝑑 is a positive-definite mass matrix. That is, if Γ𝑡 is a
homogenous Poisson (counting) process with rate 𝜆 and 𝐽𝑖 ∼ N(0,𝑀), then

𝑅𝑡 ∼
Γ𝑡∑︁
𝑖=1

𝐽𝑖.

We can then write the HMC dynamics as

d𝑋𝑡 = 𝑀−1𝑃𝑡 d𝑡

d𝑃𝑡 = ∇ log 𝜋(𝑋𝑇 ) d𝑡+ d𝑅𝑡.

The infinitesimal generator for (𝑋𝑡, 𝑃𝑡)𝑡≥0 is

𝒜𝜆,𝑀,𝜋𝜑(𝑥, 𝑝)

= 𝑀−1𝑝 · ∇𝑥𝜑(𝑥, 𝑝) +∇ log 𝜋(𝑥) · ∇𝑝𝜑(𝑥, 𝑝) + 𝜆

(︂∫︁
𝜑(𝑥, 𝑝′)𝜈𝑀(d𝑝′)− 𝜑(𝑥, 𝑝)

)︂
,

where 𝜈𝑀 is the density of N(0,𝑀). Let 𝜇𝑥,𝑝,𝑡 denote the law of (𝑋𝑥,𝑝,𝑡, 𝑃𝑥,𝑝,𝑡) with
generator 𝒜𝜆,𝑀,𝜋. The proof of the following theorem is similar to that for Theo-
rem C.4.1:

Theorem C.4.2 (HMC error bounds). Assume that:

1. ‖∇ log 𝜋 −∇ log 𝜋̃‖2 ≤ 𝜖.

2. There exist constants 𝐶 > 0 and 0 < 𝜌 < 1 such that

𝑑𝒲(𝜇𝑥,𝑝,𝑡, 𝜇𝑥,𝑝′,𝑡) ≤ 𝐶‖𝑝− 𝑝′‖2𝜌𝑡.

3. The stationary distributions of the PDMPs with, respectively, infinitesimal gen-
erators 𝒜𝜆,𝑀,𝜋 and 𝒜𝜆,𝑀,𝜋̃, exist (they are, respectively, 𝜋 × 𝜇𝑀 and 𝜋̃ × 𝜇𝑀).

4. The target density satisfies
∫︀
𝐸
𝑥2𝜋(d𝑥) <∞.

5. If a function 𝜑 ∈ 𝐶(R𝑑,R) is 𝜋-integrable then it is 𝜋̃-integrable.

Then

𝑑𝒲(𝜋, 𝜋̃) ≤ 𝐶𝜖

log(1/𝜌)
.

C.5 Analysis of computational–statistical trade-off
In this section we prove Theorem 4.4.1. In order to apply results on the approximation
accuracy of ULA [27, 39, 43], we need the following property to hold for the exact
and approximate drift functions.
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Assumption E.12 (Strong log-concavity). There exists a positive constant 𝑘𝑓 > 0
such that for all 𝑥, 𝑥′ ∈ 𝒳 ,

(𝑓(𝑥)− 𝑓(𝑥′)) · (𝑥− 𝑥′) ≤ −𝑘𝑓‖𝑥− 𝑥′‖22.

We restate the requirements given in Assumption 4.D with some additional nota-
tions.

Assumption E.13.

1. The function log 𝜋0 ∈ 𝐶3(R𝑑,R) is 𝑘0-strongly concave, 𝐿0 := ‖∇ log 𝜋0‖𝐿 <∞,
and ‖∇2[𝜕𝑗 log 𝜋0]‖2 ≤𝑀0 <∞ for 𝑗 = 1, . . . , 𝑑.

2. There exist constants 𝑘𝜑, 𝐿𝜑, and 𝑀𝜑 such that for 𝑖 = 1, . . . , 𝑁 , the function
𝜑𝑖 ∈ 𝐶3(R,R) is 𝑘𝜑-strongly concave, ‖𝜑′

𝑖‖𝐿 ≤ 𝐿𝜑 <∞, and ‖𝜑′′′
𝑖 ‖∞ ≤𝑀𝜑 <∞.

3. The matrix 𝐴𝑁 :=
∑︀𝑁

𝑖=1 𝑦𝑖𝑦
⊤
𝑖 satisfies ‖𝐴𝑁‖2 = Θ(𝑁).

Note that under Assumption E.12, there is a unique 𝑥⋆ ∈ R𝑑 such that 𝑓(𝑥⋆) = 0.
Our results in this section on based on the following bound on the Wasserstein distance
between the law of ULA Markov chain and 𝜋𝑓 :

Theorem C.5.1 ([43, Theorem 3], [44, Corollary 3]). Assume that E.12 holds and
the 𝐿𝑓 := ‖𝑓‖𝐿 <∞. Let 𝜅𝑓 := 2𝑘𝑓𝐿𝑓/(𝑘𝑓 +𝐿𝑓 ) and let 𝜇𝑥,𝑇 denote the law of 𝑋 ′

𝑥,𝑇 .
Take 𝛾𝑖 = 𝛾1𝑖

−𝛼 with 𝛼 ∈ (0, 1) and set

𝛾1 = 2(1− 𝛼)𝜅−1
𝑓 (2/𝑇 )1−𝛼 log

(︂
𝜅𝑓𝑇

2(1− 𝛼)

)︂
.

If 𝛾1 < 1/(𝑘𝑓 + 𝐿𝑓 ), then

𝑑2𝒲(𝜇𝑥,𝑇 , 𝜋𝑓 ) ≤ 16(1− 𝛼)𝐿2
𝑓𝜅

−3
𝑓 𝑑𝑇−1 log

(︂
𝜅𝑓𝑇

2(1− 𝛼)

)︂
.

For simplicity we fix 𝛼 = 1/2, though the same results hold for all 𝛼 ∈ (0, 1),
just with different constants. Take {𝛾𝑖}∞𝑖=1 as defined in Theorem C.5.1. Let 𝑥⋆ :=
arg max𝑥 ℒ(𝑥) and let 𝑆𝑘 :=

∑︀𝑁
𝑖=1 ‖𝑦𝑖‖𝑘2. The drift for this model is

𝑏(𝑥) := ∇ℒ(𝑥) = ∇ log 𝜋0(𝑥) +
𝑁∑︁
𝑖=1

𝜑′
𝑖(𝑥 · 𝑦𝑖)𝑦𝑖.
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By Taylor’s theorem, the 𝑗-th component of 𝑏(𝑥) can be rewritten as

𝑏𝑗(𝑥) = 𝜕𝑗 log 𝜋0(𝑥
⋆) +∇𝜕𝑗 log 𝜋0(𝑥

⋆) · (𝑥− 𝑥⋆) +𝑅(𝜕𝑗 log 𝜋0, 𝑥)

+
𝑁∑︁
𝑖=1

𝜑′
𝑖(𝑥

⋆ · 𝑦𝑖)𝑦𝑖𝑗 + 𝜑′′
𝑖 (𝑥⋆ · 𝑦𝑖)𝑦𝑖𝑗𝑦𝑖 · (𝑥− 𝑥⋆) +𝑅(𝜑′

𝑖(· · 𝑦𝑖)𝑦𝑖𝑗, 𝑥)

= ∇𝜕𝑗 log 𝜋0(𝑥
⋆) · (𝑥− 𝑥⋆) +𝑅(𝜕𝑗 log 𝜋0, 𝑥)

+
𝑁∑︁
𝑖=1

𝜑′′
𝑖 (𝑥⋆ · 𝑦𝑖)𝑦𝑖𝑗𝑦𝑖 · (𝑥− 𝑥⋆) +𝑅(𝜑′

𝑖(· · 𝑦𝑖)𝑦𝑖𝑗, 𝑥),
(C.5.1)

where

𝑅(𝑓, 𝑥) := ‖𝑥− 𝑥⋆‖22
∫︁ 1

0

(1− 𝑡)∇2𝑓(𝑥⋆ + 𝑡(𝑥− 𝑥⋆)) d𝑡.

Hence we can approximate the drift with a first-order Taylor expansion around 𝑥⋆:

𝑏̃(𝑥) := (∇2 log 𝜋0)(𝑥
⋆)(𝑥− 𝑥⋆) +

𝑁∑︁
𝑖=1

𝜑′′
𝑖 (𝑥⋆ · 𝑦𝑖)𝑦𝑖𝑦⊤𝑖 (𝑥− 𝑥⋆).

Observe that Assumption E.12 is satisfied for 𝑓 = 𝑏 and 𝑓 = 𝑏̃ with 𝑘𝑓 = 𝑘𝑁 :=
𝑘0+𝑘𝜑‖𝐴𝑁‖2. Furthermore, Assumption 4.B is satisfied with ‖𝑏̃‖𝐿 ≤ 𝐿𝑁 := 𝐿0+𝐿𝜑𝑆2

and ‖𝑏‖𝐿 ≤ 𝐿𝑁 as well since

‖𝜑′
𝑖(𝑥1 · 𝑦𝑖)𝑦𝑖 − 𝜑′

𝑖(𝑥2 · 𝑦𝑖)𝑦𝑖‖2 ≤ |𝜑′
𝑖(𝑥1 · 𝑦𝑖)− 𝜑′

𝑖(𝑥2 · 𝑦𝑖)|‖𝑦𝑖‖2
≤ 𝐿𝜑|𝑥1 · 𝑦𝑖 − 𝑥2 · 𝑦𝑖|‖𝑦𝑖‖2
≤ 𝐿𝜑‖𝑦𝑖‖22‖𝑥1 − 𝑥2‖2.

Thus, 𝑏 and 𝑏̃ satisfy the same regularity conditions.
We next show that they cannot deviate too much from each other. Using Eq. (C.5.1)

and regularity assumptions we have

‖𝑏(𝑥)− 𝑏̃(𝑥)‖22 =
𝑑∑︁

𝑗=1

(︃
𝑅(𝜕𝑗 log 𝜋0, 𝑥) +

𝑁∑︁
𝑖=1

𝑅(𝜑′
𝑖(· · 𝑦𝑖)𝑦𝑖𝑗, 𝑥)

)︃2

≤ ‖𝑥− 𝑥⋆‖42
𝑑∑︁

𝑗=1

(︃
𝑀0 +

𝑁∑︁
𝑖=1

𝑀𝜑‖𝑦𝑖‖22𝑦𝑖𝑗

)︃2

≤ 𝑑‖𝑥− 𝑥⋆‖42

(︃
𝑀0 +𝑀𝜑

𝑁∑︁
𝑖=1

‖𝑦𝑖‖32

)︃2

.

It follows from [43, Theorem 1(ii)] that

𝜋̃(‖𝑏− 𝑏̃‖2) ≤ 𝑑3/2𝑀𝑁𝑘
−1
𝑁 ,
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where 𝑀𝑁 := 𝑀0 +𝑀𝜑𝑆3.
Putting these results together with Theorems 4.2.1 and C.5.1 and applying the

triangle inequality, we conclude that

𝑑2𝒲(𝜇⋆
𝑇 , 𝜋) ≤ (𝑘𝑁 + 𝐿𝑁)3𝑑

𝑘3𝑁𝐿𝑁

log
(︁

2𝑘𝑁𝐿𝑁

𝑘𝑁+𝐿𝑁
𝑇
)︁

𝑇

𝑑2𝒲(𝜇̃⋆
𝑇
, 𝜋) ≤ 2(𝑘𝑁 + 𝐿𝑁)3𝑑

𝑘3𝑁𝐿𝑁

log
(︁

2𝑘𝑁𝐿𝑁

𝑘𝑁+𝐿𝑁
𝑇
)︁

𝑇
+

2𝑑3𝑀2
𝑁

𝑘4𝑁
.

In order to compare the bounds we must make the computational budgets of the
two algorithms equal. Recall that we measure computational cost by the number of
𝑑-dimensional inner products performed, so ULA with 𝑏 costs 𝑇𝑁 and ULA with 𝑏̃
costs (𝑇 + 𝑁)𝑑. Equating the two yields 𝑇 = 𝑁(𝑇/𝑑 − 1), so we must assume that
𝑇 > 𝑑. For the purposes of asymptotic analysis, assume also that 𝑆𝑖/𝑁 is bounded
from above and bounded away from zero. Under these assumptions, in the case of
𝑘𝜑 > 0, we conclude that

𝑑2𝒲(𝜇⋆
𝑇 , 𝜋) = 𝑂̃

(︂
𝑑

𝑇𝑁

)︂
and 𝑑2𝒲(𝜇̃⋆

𝑇
, 𝜋) = 𝑂̃

(︂
𝑑2

𝑁2𝑇
+

𝑑3

𝑁2

)︂
,

establishing the result of Theorem 4.4.1. For large 𝑁 , the approximate ULA with 𝑏̃
is more accurate.
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Appendix D

Chapter 5 Proofs

D.1 Proof of Theorem 5.4.1: Tilted KSDs detect
non-convergence

The result will follow from the following theorem which provides an upper bound on
the bounded Lipschitz metric 𝑑𝐵𝐿‖·‖2

(𝜇, 𝑃 ) in terms of the KSD and properties of 𝐴
and Φ.

Theorem D.1.1 (Tilted KSD lower bound). Suppose 𝑃 ∈ 𝒫 and 𝑘(𝑥, 𝑦) = 𝐴(𝑥)Φ(𝑥−
𝑦)𝐴(𝑦) with Φ ∈ 𝐶2, 𝐴 ∈ 𝐶1 positive, 1/𝐴 ∈ 𝐿2, and ∇ log𝐴 bounded and Lipschitz
continuous. Then there exists a constant ℳ𝑃 such that, for all 𝜖, 𝛿 > 0 and all
probability measures 𝜇,

𝑑𝐵𝐿‖·‖2
(𝜇, 𝑃 ) ≤ 𝜖+ (2𝜋)−𝑑/4𝒞(𝜖) KSD𝑘(𝜇, 𝑃 )

for

𝒞(𝜖) := ‖1/𝐴‖𝐿2ℳ𝑃𝐹
(︀
E[‖𝐺‖2𝐵(𝐺)](1 +𝑀1(log𝐴) +ℳ𝑃𝑀1(𝑏+∇ log𝐴))𝜖−1

)︀1/2
,

where 𝐹 (𝑡) , sup𝜔∈R𝑑 𝑒−‖𝜔‖22/(2𝑡2)/Φ̂(𝜔), 𝐺 is a standard Gaussian vector, and 𝐵(𝑦) ,
sup𝑥∈R𝑑,𝑢∈[0,1]𝐴(𝑥)/𝐴(𝑥+ 𝑢𝑦).

Remarks By bounding 𝐹 and optimizing over 𝜖, one can derive rates of conver-
gence in 𝑑𝐵𝐿‖·‖2

. Thm. 5 and Sec. 4.2 of Gorham et al. [62] provide an explicit value
for the Stein factor ℳ𝑃 .

Since log𝐴 is Lipschitz, 𝐵(𝑦) ≤ 𝑒‖𝑦‖2 so E[‖𝐺‖2𝐵(𝐺)] is finite. Now suppose
KSD𝑘(𝜇𝑛, 𝑃 ) → 0 for a sequence of probability measures (𝜇𝑛)𝑛≥1. For any 𝜖 > 0,
lim sup𝑛 𝑑𝐵𝐿‖·‖2

(𝜇𝑛, 𝑃 ) ≤ 𝜖, since 𝐹 (𝑡) is finite for all 𝑡 > 0. Hence, 𝑑𝐵𝐿‖·‖2
(𝜇𝑛, 𝑃 )→ 0,

and, as 𝑑𝐵𝐿‖·‖2
metrizes weak convergence, 𝜇𝑛 ⇒ 𝑃 .

D.1.1 Proof of Theorem D.1.1: Tilted KSD lower bound

Our proof parallels that of [61, Thm. 13]. Fix any ℎ ∈ 𝐵𝐿‖·‖2 . Since 𝐴 ∈ 𝐶1 is
positive, Thm. 5 and Sec. 4.2 of Gorham et al. [62] imply that there exists a 𝑔 ∈ 𝐶1
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which solves the Stein equation 𝒯𝑃 (𝐴𝑔) = ℎ− E𝑃 [ℎ(𝑍)] and satisfies 𝑀0(𝐴𝑔) ≤ℳ𝑃

for ℳ𝑃 a constant independent of 𝐴, ℎ, and 𝑔. Since 1/𝐴 ∈ 𝐿2, we have ‖𝑔‖𝐿2 ≤
ℳ𝑃‖1/𝐴‖𝐿2 .

Since ∇ log𝐴 is bounded, 𝐴(𝑥) ≤ exp 𝛾‖𝑥‖ for some 𝛾. Moreover, any measure
in 𝒫 is sub-Gaussian, so 𝑃 has finite exponential moments. Hence, since 𝐴 is also
positive, we may define the tilted probability measure 𝑃𝐴 with density proportional
to 𝐴𝑝. The identity 𝒯𝑃 (𝐴𝑔) = 𝐴𝒯𝑃𝐴

𝑔 implies that

𝑀0(𝐴∇𝒯𝑃𝐴
𝑔) = 𝑀0(∇𝒯𝑃 (𝐴𝑔)− 𝒯𝑃 (𝐴𝑔)∇ log𝐴) ≤ 1 +𝑀1(log𝐴).

Since 𝑏 and ∇ log𝐴 are Lipschitz, we may apply the following lemma, proved in
Appendix D.1.2 to deduce that there is a function 𝑔𝜖 ∈ 𝒦𝑑

𝑘1
for 𝑘1(𝑥, 𝑦) , Φ(𝑥 − 𝑦)

such that |(𝒯𝑃 (𝐴𝑔𝜖))(𝑥)− (𝒯𝑃 (𝐴𝑔))(𝑥)| = 𝐴(𝑥)|(𝒯𝑃𝐴
𝑔𝜖)(𝑥)− (𝒯𝑃𝐴

𝑔)(𝑥)| ≤ 𝜖 for all 𝑥
with norm

‖𝑔𝜖‖𝒦𝑑
𝑘1

(D.1.1)

≤ (2𝜋)−𝑑/4𝐹
(︀
E[‖𝐺‖2𝐵(𝐺)](1 +𝑀1(log𝐴) +ℳ𝑃𝑀1(𝑏+∇ log𝐴))𝜖−1

)︀1/2‖1/𝐴‖𝐿2ℳ𝑃 .

Lemma D.1.2 (Stein approximations with finite RKHS norm). Consider a function
𝐴 : R𝑑 → R satisfying 𝐵(𝑦) , sup𝑥∈R𝑑,𝑢∈[0,1]𝐴(𝑥)/𝐴(𝑥 + 𝑢𝑦). Suppose 𝑔 : R𝑑 → R𝑑

is in 𝐿2 ∩ 𝐶1. If 𝑃 has Lipschitz log density, and 𝑘(𝑥, 𝑦) = Φ(𝑥 − 𝑦) for Φ ∈ 𝐶2

with generalized Fourier transform Φ̂, then for every 𝜖 ∈ (0, 1], there is a function
𝑔𝜖 : R𝑑 → R𝑑 such that |(𝒯𝑃𝑔𝜖)(𝑥)− (𝒯𝑃𝑔)(𝑥)| ≤ 𝜖/𝐴(𝑥) for all 𝑥 ∈ R𝑑 and

‖𝑔𝜖‖𝒦𝑑
𝑘
≤ (2𝜋)−𝑑/4𝐹 (E[‖𝐺‖2𝐵(𝐺)](𝑀0(𝐴∇𝒯𝑃𝑔) +𝑀0(𝐴𝑔)𝑀1(𝑏))𝜖

−1)
1/2‖𝑔‖𝐿2 ,

where 𝐹 (𝑡) , sup𝜔∈R𝑑 𝑒−‖𝜔‖22/(2𝑡2)/Φ̂(𝜔) and 𝐺 is a standard Gaussian vector.

Since ‖𝐴𝑔𝜖‖𝒦𝑑
𝑘

= ‖𝑔𝜖‖𝒦𝑑
𝑘1

, the triangle inequality and the definition of the KSD
now yield

|E𝜇[ℎ(𝑋)]− E𝑃 [ℎ(𝑍)]|
= |E𝜇[(𝒯𝑃 (𝐴𝑔))(𝑋)]| ≤ |E[(𝒯𝑃 (𝐴𝑔))(𝑋)− (𝒯𝑃 (𝐴𝑔𝜖))(𝑋)]|+ |E𝜇[(𝒯𝑃 (𝐴𝑔𝜖))(𝑋)]|
≤ 𝜖+ ‖𝑔𝜖‖𝒦𝑑

𝑘1

KSD𝑘(𝜇, 𝑃 ).

The advertised conclusion follows by applying the bound Eq. (D.1.1) and taking the
supremum over all ℎ ∈ 𝐵𝐿‖·‖.

D.1.2 Proof of Lemma D.1.2: Stein approximations with finite
RKHS norm

Our proof parallels that of Gorham and Mackey [61, Lem. 12]. Let 𝑌 denote a stan-
dard Gaussian vector with density 𝜌. For each 𝛿 ∈ (0, 1], we define 𝜌𝛿(𝑥) = 𝛿−𝑑𝜌(𝑥/𝛿),
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and for any function 𝑓 we write 𝑓𝛿(𝑥) , E[𝑓(𝑥+ 𝛿𝑌 )]. Under our assumptions on
ℎ = 𝒯𝑃𝑔 and 𝐵, the mean value theorem and Cauchy-Schwarz imply that for each
𝑥 ∈ R𝑑 there exists 𝑢 ∈ [0, 1] such that

|ℎ𝛿(𝑥)− ℎ(𝑥)| = |E𝜌[ℎ(𝑥+ 𝛿𝑌 )− ℎ(𝑥)]| = |E𝜌[⟨𝛿𝑌 ,∇ℎ(𝑥+ 𝛿𝑌 𝑢)⟩]|
≤ 𝛿 E𝜌[‖𝑌 ‖2/𝐴(𝑥+ 𝛿𝑌 𝑢)] ≤ 𝛿𝑀0(𝐴∇𝒯𝑃𝑔)E𝜌[‖𝑌 ‖2𝐵(𝑌 )]/𝐴(𝑥).

Now, for each 𝑥 ∈ R𝑑 and 𝛿 > 0,

ℎ𝛿(𝑥) = E𝜌[⟨𝑏(𝑥+ 𝛿𝑌 ), 𝑔(𝑥+ 𝛿𝑌 )⟩] + E[⟨∇, 𝑔(𝑥+ 𝛿𝑌 )⟩] and
(𝒯𝑃𝑔𝛿)(𝑥) = E𝜌[⟨𝑏(𝑥), 𝑔(𝑥+ 𝛿𝑌 )⟩] + E[⟨∇, 𝑔(𝑥+ 𝛿𝑌 )⟩],

so, by Cauchy-Schwarz, the Lipschitzness of 𝑏, and our assumptions on 𝑔 and 𝐵,

|(𝒯𝑃𝑔𝛿)(𝑥)− ℎ𝛿(𝑥)| = |E𝜌[⟨𝑏(𝑥)− 𝑏(𝑥+ 𝛿𝑌 ), 𝑔(𝑥+ 𝛿𝑌 )⟩]|
≤ E𝜌[‖𝑏(𝑥)− 𝑏(𝑥+ 𝛿𝑌 )‖2‖𝑔(𝑥+ 𝛿𝑌 )‖2]
≤𝑀0(𝐴𝑔)𝑀1(𝑏) 𝛿 E𝜌[‖𝑌 ‖2/𝐴(𝑥+ 𝛿𝑌 )]

≤𝑀0(𝐴𝑔)𝑀1(𝑏) 𝛿 E𝜌[‖𝑌 ‖2𝐵(𝑌 )]/𝐴(𝑥).

Thus, if we fix 𝜖 > 0 and define 𝜖 = 𝜖/(E𝜌[‖𝑌 ‖2𝐵(𝑌 )](𝑀0(𝐴∇𝒯𝑃𝑔)+𝑀0(𝐴𝑔)𝑀1(𝑏))),
the triangle inequality implies

|(𝒯𝑃𝑔𝜖)(𝑥)− (𝒯𝑃𝑔)(𝑥)| ≤ |(𝒯𝑃𝑔𝜖)(𝑥)− ℎ𝜖(𝑥)|+ |ℎ𝜖(𝑥)− ℎ(𝑥)| ≤ 𝜖/𝐴(𝑥).

To conclude, we will bound ‖𝑔𝛿‖𝒦𝑑
𝑘
. By Wendland [143, Thm. 10.21],

‖𝑔𝛿‖2𝒦𝑑
𝑘

= (2𝜋)−𝑑/2

∫︁
R𝑑

|𝑔𝛿(𝜔)|2

Φ̂(𝜔)
𝑑𝜔

= (2𝜋)𝑑/2
∫︁
R𝑑

|𝑔(𝜔)|2𝜌𝛿(𝜔)2

Φ̂(𝜔)
𝑑𝜔

≤ (2𝜋)−𝑑/2

{︃
sup
𝜔∈R𝑑

𝑒−‖𝜔‖22𝛿2/2

Φ̂(𝜔)

}︃∫︁
R𝑑

|𝑔(𝜔)|2 𝑑𝜔,

where we have used the Convolution Theorem [143, Thm. 5.16] and the identity
𝜌𝛿(𝜔) = 𝜌(𝛿𝜔). Finally, an application of Plancherel’s theorem [70, Thm. 1.1] gives
‖𝑔𝛿‖𝒦𝑑

𝑘
≤ (2𝜋)−𝑑/4𝐹 (𝛿−1)1/2‖𝑔‖𝐿2 .

D.2 Proof of Proposition 5.4.3
For each 𝑗 ∈ [𝐽 ], apply Corollary D.13.2 with 𝛿/𝐽 in place of 𝛿 to the random variable

1

𝑀

𝑀∑︁
𝑚=1

|(F−1∆𝑁𝑘
1/2
𝑗 )(𝑍𝑚)|𝑟

𝜈(𝑍𝑚)
.
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The result follows by plugging in the high probability lower bounds from Corol-
lary D.13.2 into fGMMD2

𝑘1/2,𝑟,𝜈,𝑀(𝑄𝑁 , 𝑃 ) and using the union bound.

D.3 Proof of Proposition 5.4.4

Let 𝑤𝑗(𝑧) := |(F−1∆𝑁𝑘
1/2
𝑗 )(𝑧)|𝑟/𝜈(𝑧). It follows from the definition of 𝒬(𝑘1/2, 𝜈, 𝑐)

and the finiteness condition on 𝑃 that for some 𝑐′ > 0

sup
𝑄𝑁∈𝒬(𝑘1/2,𝜈,𝑐)

sup
𝑗,𝑧
|(F−1∆𝑁𝑘

1/2
𝑗 )(𝑧)|𝑟/𝜈(𝑧) ≤ 𝑐′.

Hence for any 𝑄𝑁 ∈ 𝒬(𝑘1/2, 𝜈, 𝑐) and 𝑗 ∈ [𝐽 ],

E[𝑌 2
𝑗 ] ≤ 𝑐′E[𝑌𝑗].

D.4 Proof of Proposition 5.4.5

We have

𝑘𝑗(𝑥, 𝑦) :=

∫︁
𝑘
1/2
𝑗 (𝑥, 𝜔)𝑘

1/2
𝑗 (𝑦, 𝜔)𝜌(𝜔) d𝜔

=

∫︁
F(𝒪𝑗,𝑥𝑓𝑗(𝑥− ·))(𝜔)F(𝒪𝑗,𝑦𝑓𝑗(𝑦 − ·))(𝜔)𝜌(𝜔)

=

∫︁
(𝒪𝑗,𝑥𝑓𝑗(𝑥− ·) * 𝜌1/2)(𝑧) (𝒪𝑗,𝑦𝑓𝑗(· − 𝑦) * 𝜌1/2)(𝑧) d𝑧

= 𝒪𝑗,𝑥𝒪𝑗,𝑦(𝑓𝑗 * 𝜌1/2 * 𝑓𝑗 * 𝜌1/2)(𝑥− 𝑦)

= 𝒪𝑗,𝑥𝒪𝑗,𝑦F(̂︀𝑓𝑗2𝜌)(𝑥− 𝑦)

= 𝒪𝑗,𝑥𝒪𝑗,𝑦Φ𝑗(𝑥− 𝑦).

It now follows that we can rewrite the MMD under 𝑘𝑗 as

(∆𝑁 ×∆𝑁)𝑘𝑗(𝑥, 𝑦) = (∆𝑁𝒪𝑗,𝑥 ×∆𝑁𝒪𝑗,𝑦)Φ𝑗(𝑥− 𝑦)

= (∆𝑁𝒪𝑗,𝑥 ×∆𝑁𝒪𝑗,𝑦)⟨Φ𝑗(𝑥− ·),Φ𝑗(𝑦 − ·)⟩Φ𝑗

= ‖∆𝑁𝒪𝑗,𝑥Φ𝑗(𝑥− ·)‖2Φ𝑗
.

D.5 Proof of Theorem 5.4.6: (𝑐, 𝛼) second moment
bounds for fGMMD

Assumption E.14. For each 𝑗 ∈ [𝐽 ], 𝜔2
𝑗 Φ̂

1/2
𝑗 (𝜔) is integrable.

Assumption E.15. For each 𝑗 ∈ [𝐽 ], there exists a function 𝐵𝑗 such that |𝒪𝑗,𝑥𝑓𝑗(𝑥−
𝑧)| ≤ 𝐵𝑗(𝑥, 𝑧)𝑓𝑗(𝑧).
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Assumption E.16. For some norm ‖·‖ and for each 𝑗 ∈ [𝐽 ], there exists a continuous
nonincreasing function 𝑓𝑗 and a constant 𝐶𝑓,𝑗 > 0 such that for all 𝑧, 𝑓𝑗(‖𝑧‖) ≤
𝑓𝑗(𝑧) ≤ 𝐶𝑓,𝑗𝑓𝑗(‖𝑧‖) and lim𝑅→∞ 𝑓𝑗(𝑅) = 0.

Assumption E.17. There exists 𝑏 ∈ [0, 1− 𝜉) such that for each 𝑗 ∈ [𝐽 ], there exists
𝐶𝐵,𝑗 > 0 such that (|∆𝑁 |𝐵𝑗)(𝑧) ≤ 𝐶𝐵,𝑗𝑓𝑗(𝑧)−𝑏

Assumption E.18. For each 𝑗 ∈ [𝐽 ], there exists 𝐶𝒪,𝑗 > 0 such that sup𝜔(1 +
𝜔𝑗)

−1|
∫︀
𝒪𝑗,𝑥𝑒

−𝑖𝜔·𝑥∆𝑁(d𝑥)| ≤ 𝐶𝒪,𝑗.

Lemma D.5.1. Let 𝜓𝑗(𝜔) := (1+𝜔𝑗)
−1∆𝑁𝒪𝑗,𝑥𝑒

−𝑖𝜔·𝑥. If Assumptions 5.F, 5.G, E.14
and E.18 hold, then for any 𝜆 ∈ (1/2, 𝜆),

|∆𝑁𝒪𝑗,𝑥𝑓𝑗(𝑥− 𝑧)| ≤ ‖𝑓𝑗‖Φ(𝜆)
𝑗

(︁
‖𝜓𝑗‖𝐿∞

⃦⃦⃦
(1 + 𝜕𝑥𝑗

)Φ
(1/4)
𝑗

⃦⃦⃦
𝐿2

)︁2−2𝜆

‖∆𝑁𝒪𝑗,𝑥Φ𝑗(𝑥̂− ·)‖2𝜆−1
Φ𝑗

= 𝐶𝑗,𝜆,𝑑 MMD2𝜆−1
𝑘𝑗

.

Proof Apply Proposition D.6.1 with 𝒟 = ∆𝑁𝒪𝑗,𝑥, 𝑓 = 𝑓𝑗, ℎ(𝜔) = 1 + 𝜔𝑗, and
𝑡 = 1/2. The equality follows from Proposition 5.4.5.

Lemma D.5.2. If Assumptions 5.F, E.15 and E.17 hold, then

|∆𝑁𝒪𝑗,𝑥𝑓𝑗(𝑥− 𝑧)| ≤ 𝐶𝐵,𝑗𝑓𝑗(𝑧)1−𝑏.

Proof We have

|∆𝑁𝒪𝑗,𝑥𝑓𝑗(𝑥− 𝑧)| ≤ |∆𝑁 ||𝒪𝑗,𝑥𝑓𝑗(𝑥− 𝑧)| ≤ |∆𝑁 |𝐵𝑗(·, 𝑧)𝑓𝑗(𝑧) ≤ 𝐶𝐵,𝑗𝑓𝑗(𝑧)1−𝑏.

Note that

𝑤𝑗(𝑧) := |(F−1∆𝑁𝑘
1/2
𝑗 )(𝑧)|𝑟/𝜈(𝑧) = |∆𝑁𝒪𝑗,𝑥𝑓𝑗(𝑥− 𝑧)|𝑟/𝜈(𝑧).

For a set 𝑆 let 𝜈𝑆(𝑆 ′) :=
∫︀
𝑆∩𝑆′ 𝜈(d𝑧). Let 𝐾 := B‖·‖(𝑅). Let 𝑍 ∼ 𝜈 and 𝑌𝑗 = 𝑤𝑗(𝑍).

We have

E[𝑌 2
𝑗 ] = E[𝑤𝑗(𝑍)2] = E[𝑤𝑗(𝑍)21(𝑍 ∈ 𝐾)] + E[𝑤𝑗(𝑍)21(𝑍 /∈ 𝐾)]

≤ ‖𝑤𝑗‖𝐿1(𝜈)‖𝑤𝑗1(· ∈ 𝐾)‖𝐿∞(𝜈) + ‖1(· /∈ 𝐾)‖𝐿1(𝜈)

⃦⃦
𝑤2

𝑗1(· /∈ 𝐾)
⃦⃦
𝐿∞(𝜈)

=
⃦⃦⃦
F−1∆𝑁𝑘

1/2
𝑗

⃦⃦⃦𝑟
𝐿𝑟

sup
𝑧∈𝐾

𝑤𝑗(𝑧) + 𝜈(𝐾{) sup
𝑧∈𝐾{

𝑤𝑗(𝑧)2

= E[𝑌𝑗] sup
𝑧∈𝐾

𝑤𝑗(𝑧) + 𝜈(𝐾{) sup
𝑧∈𝐾{

𝑤𝑗(𝑧)2
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Applying Lemma D.5.1 and Assumption 5.H we have

sup
𝑧∈𝐾

𝑤𝑗(𝑧) ≤ 𝐶𝑟
𝑗,𝜆,𝑑 MMD

𝑟(2𝜆−1)
𝑘𝑗

sup
𝑧∈𝐾

𝜈(𝑧)−1

≤ 𝐶𝑟
𝑗,𝜆,𝑑𝐶𝜈,𝑗 sup

𝑧∈𝐾
𝑓𝑗(𝑧)−𝜉𝑟 MMD

𝑟(2𝜆−1)
𝑘𝑗

≤ 𝐶𝑟
𝑗,𝜆,𝑑𝐶𝜈,𝑗𝑐

𝑟(2𝜆−1)
𝑟,𝑑 ‖𝜌‖𝑟(𝜆−1/2)

𝐿𝑡 𝑓𝑗(𝑅)−𝜉𝑟 GMMD
𝑟(2𝜆−1)

𝑘
1/2
𝑗 ,𝑟

= 𝐶𝑟
𝑗,𝜆,𝑑𝐶𝜈,𝑗𝑐

𝑟(2𝜆−1)
𝑟,𝑑 ‖𝜌‖𝑟(𝜆−1/2)

𝐿𝑡 𝑓𝑗(𝑅)−𝜉𝑟E[𝑌𝑗]
2𝜆−1

Applying Lemma D.5.2 and Assumption 5.H we have

sup
𝑧∈𝐾{

𝑤𝑗(𝑧)2 ≤ sup
𝑧∈𝐾{

𝐶2𝑟
𝐵,𝑗𝑓𝑗(𝑧)2(1−𝑏)𝑟/𝜈(𝑧)2

≤ sup
𝑧∈𝐾{

𝐶2𝑟
𝐵,𝑗𝐶

2
𝜈,𝑗𝑓𝑗(𝑧)2(1−𝑏−𝜉)𝑟

≤ 𝐶2𝑟
𝐵,𝑗𝐶

2
𝜈,𝑗𝐶

2(1−𝑏−𝜉)𝑟
𝑓,𝑗 𝑓𝑗(𝑅)2(1−𝑏−𝜉)𝑟.

Thus, we have that

E[𝑌 2
𝑗 ] ≤ 𝐶𝑗,𝜆,𝑑,𝑟,𝜌E[𝑌𝑗]

2𝜆𝑓𝑗(𝑅)−𝜉𝑟 + 𝐶𝑗,𝐵,𝜉𝑓𝑗(𝑅)2(1−𝑏−𝜉)𝑟.

As long as E[𝑌𝑗]
2𝜆 ≤ 𝐶𝑗,𝐵,𝜉𝑓𝑗(0)2(1−𝑏−𝜉/2)𝑟/𝐶𝑗,𝜆,𝑑,𝑟,𝜌, since 𝑓𝑗 is continuous and non-

increasing to zero we can choose 𝑅 such that 𝑓𝑗(𝑅)2(1−𝑏−𝜉)𝑟 = 𝐶𝑗,𝜆,𝑑,𝑟,𝜌E[𝑌𝑗]
2𝜆/𝐶𝑗,𝐵,𝜉

and the result follows for E[𝑌𝑗]
2𝜆 ≤ 𝐶𝑗,𝐵,𝜉𝑓𝑗(0)2(1−𝑏−𝜉/2)𝑟/𝐶𝑗,𝜆,𝑑,𝑟,𝜌. Otherwise, we

can guarantee that E[𝑌 2
𝑗 ] ≤ 𝐶𝛼E[𝑌𝑗]

2−𝛾𝛼 be choosing 𝐶𝛼 sufficiently large, since by
assumption E[𝑌𝑗] is uniformly bounded over 𝑄𝑁 ∈ 𝒬(𝑘1/2, 𝜈, 𝑐, 𝑏, 𝐶𝐵,𝑗, 𝐶𝒪,𝑗).

D.6 A uniform MMD-type bound

Let 𝒟 denote a tempered distribution and Φ a stationary kernel. Also, define 𝒟̂(𝜔) :=
𝒟𝑥𝑒

−𝑖⟨𝜔,𝑥̂⟩.

Proposition D.6.1. Let 𝑓 be a symmetric function such that for some 𝑠 ∈ (0, 1],
𝑓 ∈ 𝒦Φ(𝑠) and 𝒟𝑥𝑓(𝑥̂− ·) ∈ 𝒦Φ(𝑠). Then

|𝒟𝑥𝑓(𝑥̂− 𝑧)| ≤ ‖𝑓‖Φ(𝑠)

⃦⃦
𝒟𝑥Φ(𝑠)(𝑥̂− ·)

⃦⃦
Φ(𝑠)

and for any 𝑡 ∈ (0, 𝑠) any function ℎ(𝜔),⃦⃦
𝒟𝑥Φ(𝑠)(𝑥̂− ·)

⃦⃦1−𝑡

Φ(𝑠) ≤
(︁⃦⃦⃦
ℎ−1𝒟̂

⃦⃦⃦
𝐿∞

⃦⃦⃦
ℎΦ̂𝑡/2

⃦⃦⃦
𝐿2

)︁1−𝑠

‖𝒟𝑥Φ(𝑥̂− ·)‖𝑠−𝑡
Φ .

Furthermore, if for some 𝑐 > 0 and 𝑟 ∈ (0, 𝑠/2), 𝑓 ≤ 𝑐 Φ̂𝑟, then

‖𝑓‖Φ(𝑠) ≤
𝑐
⃦⃦

Φ(𝑟−𝑠/2)
⃦⃦
𝐿2

(2𝜋)𝑑/4
.
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Proof The first inequality follows from an application of Cauchy-Schwartz:

|𝒟𝑥𝑓(𝑥̂− 𝑧)| = |⟨𝑓(· − 𝑧),𝒟𝑥Φ(𝑠)(𝑥̂− ·)⟩Φ(𝑠) |
≤ ‖𝑓(· − 𝑧)‖Φ(𝑠)

⃦⃦
𝒟𝑥Φ(𝑠)(𝑥̂− ·)

⃦⃦
Φ(𝑠)

= ‖𝑓‖Φ(𝑠)

⃦⃦
𝒟𝑥Φ(𝑠)(𝑥̂− ·)

⃦⃦
Φ(𝑠) .

For the first norm, we have

‖𝑓‖2Φ(𝑠) = (2𝜋)−𝑑/2

∫︁
𝑓 2(𝜔)

Φ̂𝑠(𝜔)
d𝜔

≤ 𝑐2(2𝜋)−𝑑/2

∫︁
Φ̂2𝑟−𝑠(𝜔) d𝜔

= 𝑐2(2𝜋)−𝑑/2
⃦⃦

Φ(𝑟−𝑠/2)
⃦⃦2
𝐿2 .

Note that by the convolution theorem F(𝒟𝑥Φ(𝑠)(𝑥̂ − ·))(𝜔) = 𝒟̂(𝜔)Φ̂𝑠(𝜔). For the
second norm, applying Jensen’s inequality and Hölder’s inequality yields

⃦⃦
𝒟𝑥Φ(𝑠)(𝑥̂− ·)

⃦⃦2
Φ(𝑠) = (2𝜋)−𝑑/2

∫︁
Φ̂(𝜔)2𝑠|𝒟̂(𝜔)|2

Φ̂𝑠(𝜔)
d𝜔

= (2𝜋)−𝑑/2

(︂∫︁
Φ̂𝑡|𝒟̂|2

)︂∫︁
Φ̂(𝜔)𝑡|𝒟̂(𝜔)|2∫︀

Φ̂𝑡|𝒟̂|2
Φ̂(𝜔)𝑠−𝑡 d𝜔

≤ (2𝜋)−𝑑/2

(︂∫︁
Φ̂𝑡|𝒟̂|2

)︂(︃∫︁
Φ̂(𝜔)𝑡|𝒟̂(𝜔)|2∫︀

Φ̂𝑡|𝒟̂|2
Φ(𝜔)1−𝑡 d𝜔

)︃ 𝑠−𝑡
1−𝑡

=

(︂∫︁
Φ̂𝑡|𝒟̂|2

)︂ 1−𝑠
1−𝑡

‖𝒟𝑥Φ(𝑥̂− ·)‖2
𝑠−𝑡
1−𝑡

Φ

≤
(︂⃦⃦⃦
|ℎ−1𝒟̂|2

⃦⃦⃦
𝐿∞

∫︁
ℎ2Φ̂𝑡

)︂ 1−𝑠
1−𝑡

‖𝒟𝑥Φ(𝑥̂− ·)‖2
𝑠−𝑡
1−𝑡

Φ

=

(︂⃦⃦⃦
ℎ−1𝒟̂

⃦⃦⃦2
𝐿∞

⃦⃦⃦
ℎΦ̂𝑡/2

⃦⃦⃦2
𝐿2

)︂ 1−𝑠
1−𝑡

‖𝒟𝑥Φ(𝑥̂− ·)‖2
𝑠−𝑡
1−𝑡

Φ .

We have⃦⃦
∆𝑁𝒪𝑗,𝑥Φ(1/2)(𝑥̂− ·)

⃦⃦2
Φ(1/2) = (∆𝑁𝒪𝑗,𝑥 ×∆𝑁𝒪𝑗,𝑦)ℎ𝑗(𝑥̂− 𝑦)

=

∫︁
∆𝑁𝒪𝑗,𝑥𝑓𝑗(𝑥− 𝑧)∆𝑁𝒪𝑗,𝑦𝜌(𝑧 − 𝑦)1/2 d𝑧

≤ ‖∆𝑁𝒪𝑗,𝑥𝑓𝑗(𝑥− ·)‖𝐿𝑟

⃦⃦
∆𝑁𝒪𝑗,𝑦𝜌(· − 𝑦)1/2

⃦⃦
𝐿𝑠
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D.7 Proof of Theorem 5.4.9
Let𝐾 := B‖·‖(𝑅). Applying Lemmas D.5.1 and D.5.2 and Assumptions E.17 and E.18,
we have

‖F−1∆𝑁𝑘
1/2
𝑗 ‖𝑟𝐿𝑟 =

∫︁
|∆𝑁𝒪𝑗,𝑥𝑓𝑗(𝑥− 𝑧)|𝑟d𝑧

≤ vol(𝐾) sup
𝑧∈𝐾
|∆𝑁𝒪𝑗,𝑥𝑓𝑗(𝑥− 𝑧)|𝑟 +

∫︁
𝐾{

|∆𝑁𝒪𝑗,𝑥𝑓𝑗(𝑥− 𝑧)|𝑟d𝑧

≤ vol(𝐾)𝐶𝑟
𝑗,𝜆,𝑑 MMD

𝑟(2𝜆−1)
𝑘𝑗

+𝐶𝑟
𝐵,𝑗

∫︁
𝐾{

𝑓𝑗(𝑧)𝑟(1−𝑏)d𝑧

≤ vol(𝐾)𝐶𝑟
𝑗,𝜆,𝑑 MMD

𝑟(2𝜆−1)
𝑘𝑗

+𝐶𝑟
𝐵,𝑗𝐶

𝑟
𝑓,𝑗𝐺𝑗(𝑅).

Setting the terms equal and solving for 𝑅 gives the first result.

D.8 Proof of Theorem 5.4.10
Applying Lemma D.5.1, we have

1

𝑀

𝑀∑︁
𝑚=1

|(F−1∆𝑁𝑘
1/2
𝑗 )(𝑍𝑚)|𝑟

𝜈(𝑍𝑚)
≤ 𝐶𝑟

𝑗,𝜆,𝑑

1

𝑀

𝑀∑︁
𝑚=1

MMD
𝑟(2𝜆−1)
𝑘𝑗

𝜈(𝑍𝑚)

= 𝐶𝑟
𝑗,𝜆,𝑑

(︃
1

𝑀

𝑀∑︁
𝑚=1

𝜈(𝑍𝑚)−1

)︃
MMD

𝑟(2𝜆−1)
𝑘𝑗

.

The result now follows from the definition of fGMMD.

D.9 Proof of Theorem 5.4.7: Tilted hyperbolic se-
cant fGMMD properties

We verify each of the assumptions in turn. By construction Assumption 5.F is satisfied
with 𝒪𝑗,𝑥(𝑓)(𝑥) = 𝒯𝑗,𝑥𝐴(𝑥)𝑓(𝑥). Note that since 𝜌 = 1, Φ̂𝑗 = Φ̂sech

𝑎 . Assumption 5.G
holds since for any 𝜆 ∈ (0, 1), if follow from Proposition D.12.2 that

̂︀𝑓𝑗/Φ̂𝜆/2
𝑗 = Φ̂sech

2𝑎 /(Φ̂sech
𝑎 )𝜆/2 ≤ 2𝑑/2(Φ̂sech

2𝑎 )1−𝜆 ∈ 𝐿2.

Clearly Assumption E.14 holds as well.
Let 𝑏 := ∇ log 𝑝. To show Assumption E.15 holds, we apply Proposition D.12.3:

𝒪𝑗,𝑥𝑓𝑗(𝑥− 𝑧)

= 𝒯𝑗,𝑥𝐴(𝑥)Φsech
2𝑎 (𝑥− 𝑧)

= (𝜕𝑥𝑗
log 𝑝(𝑥) + 𝜕𝑥𝑗

log𝐴(𝑥) + 𝜕𝑥𝑗
log Φsech

2𝑎 (𝑥− 𝑧))𝐴(𝑥)Φsech
2𝑎 (𝑥− 𝑧)

≤ (𝜕𝑥𝑗
log 𝑝(𝑥) + 𝜕𝑥𝑗

log𝐴(𝑥) + 𝜕𝑥𝑗
log Φsech

2𝑎 (𝑥− 𝑧))𝐴(𝑥)𝑒
√

𝜋
2
𝑎‖𝑥‖1Φsech

𝑎 (𝑧). (D.9.1)
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Assumption 5.H follows directly from the definition of 𝜈. Assumption E.16 holds
for ‖·‖ = ‖·‖1, 𝑓𝑗(𝑅) = 𝑒−

√
2𝜋 𝑎𝑅, and 𝐶𝑓,𝑗 = 2 since

𝑒−𝑎|𝑥𝑑| ≤ sech(𝑎𝑥𝑑) ≤ 2𝑒−𝑎|𝑥𝑑|.

Next, we verify that 𝒬sech(𝐶) ⊆ 𝒬(𝑏, 𝐶𝐵,𝑗, 𝐶𝒪,𝑗). Take any 𝑏 > 0 as fixed. It
follows from Eq. (D.9.1) that

𝐵𝑗(𝑥, 𝑧) = (𝜕𝑥𝑗
log 𝑝(𝑥) + 𝜕𝑥𝑗

log𝐴(𝑥) + 𝜕𝑥𝑗
log Φsech

2𝑎 (𝑥− 𝑧))𝐴(𝑥)𝑒
√

𝜋
2
𝑎‖𝑥‖1 .

We see that

𝜕𝑥𝑗
log Φsech

2𝑎 (𝑥− 𝑧) =
√

2𝜋 𝑎 tanh(
√

2𝜋 𝑎(𝑥𝑗 − 𝑧𝑗)) +
∑︀𝐷

𝑑̸=𝑗 log sech(
√

2𝜋 𝑎(𝑥𝑑 − 𝑧𝑑))

≤ (
√

2𝜋 𝑎)(1 +
∑︀𝐷

𝑑̸=𝑗𝑥𝑑 + 𝑧𝑑)

≤ (
√

2𝜋 𝑎)(1 + ‖𝑥‖1 + ‖𝑧‖1). (D.9.2)

The hypotheses concerning ∇ log 𝑝 and 𝐴, together with Eq. (D.9.2), imply for some
constant 𝑐′ > 0,

𝐵𝑗(𝑥, 𝑧) ≤ 𝑐′(1 + ‖𝑥‖1 + ‖𝑧‖1)𝐴(𝑥)𝑒
√

𝜋
2
𝑎‖𝑥‖1 .

Hence from some 𝑐′′, 𝑐′′′ ≥ 0, (𝑄𝑁𝐵𝑗)(𝑧) ≤ 𝑐′′(1 + ‖𝑧‖1) ≤ 𝑐′′′𝑓𝑗(𝑧)−𝑏, verifying As-
sumption E.17. In addition, for some constant 𝑐′′′′,

(1 + 𝜔𝑗)
−1|𝑄𝑁(𝒪𝑗,𝑥𝑒

𝑖𝜔·𝑥)| = (1 + 𝜔𝑗)
−1|𝑄𝑁((𝜕𝑥𝑗

log 𝑝(𝑥) + 𝜕𝑥𝑗
log𝐴(𝑥)− 𝑖𝜔𝑗)𝐴(𝑥)𝑒𝑖𝜔·𝑥)|

≤ 𝑄𝑁(𝑐′′′′(1 + ‖𝑥‖1)𝐴(𝑥))

≤ 𝑐′′′′𝐶,

verifying Assumption E.18. Since 𝜌 = 1, the equality of MMD and GMMD follows
from Eq. (5.3).

D.10 Proof of Theorem 5.4.8: IMQ fGMMD proper-
ties

We verify each of the assumptions in turn. By construction Assumption 5.F is satisfied
with 𝒪𝑗,𝑥 = 𝒯𝑗,𝑥.

By Wendland [143, Theorem 8.15], Φ𝑐,𝛽 has generalized Fourier transform

̂︂Φ𝑐,𝛽(𝜔) =
21+𝛽

Γ(−𝛽)

(︂
‖𝜔‖2
𝑐

)︂−𝛽−𝐷/2

𝐾𝛽+𝐷/2(𝑐‖𝜔‖2),

where 𝐾𝑣(𝑧) is the modified Bessel function of the third kind. We write 𝑎(ℓ) ∼̇ 𝑏(ℓ)
to denote asymptotic equivalence up to a constant: limℓ 𝑎(ℓ)/𝑏(ℓ) = 𝑐 for some 𝑐 ∈
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(0,∞). Asymptotically [1, eq. 10.25.3],

Ψ̂IMQ
𝑐,𝛽 (𝜔) ∼̇ ‖𝜔‖−𝛽−𝐷/2−1/2

2 𝑒−𝑐‖𝜔‖2 , ‖𝜔‖2 →∞ and

Ψ̂IMQ
𝑐,𝛽 (𝜔) ∼̇ ‖𝜔‖−(𝛽+𝐷/2)−|𝛽+𝐷/2|

2 = ‖𝜔‖−(2𝛽+𝐷)+
2 ‖𝜔‖2 → 0.

Note that we have Φ̂𝑗 = Ψ̂IMQ
𝑐,𝛽 . Clearly Assumption E.14 holds. To verify Assump-

tion 5.G, note that

Ψ̂IMQ
𝑐′,𝛽′ /(Ψ̂

IMQ
𝑐,𝛽 )𝜆/2 ∼ ‖𝜔‖−(𝛽′+𝐷/2−1/2)+(𝛽+𝐷/2−1/2)𝜆/2

2 𝑒(−𝑐′+𝑐𝜆/2)‖𝜔‖2 , ‖𝜔‖2 →∞ and

∼ ‖𝜔‖𝜆(2𝛽+𝐷)+/2−(2𝛽′+𝐷)+
2 = ‖𝜔‖𝜆(2𝛽+𝐷)/2

2 ‖𝜔‖2 → 0,

so Ψ̂IMQ
𝑐′,𝛽′ /(Ψ̂

IMQ
𝑐,𝛽 )𝜆/2 ∈ 𝐿2 as long as 𝑐′ = 𝑐𝜆/2 > 𝑐𝜆/2 and 𝜆(2𝛽 + 𝐷) > −𝐷. The

first condition holds by construction and second condition is always satisfied, since
2𝛽 +𝐷 ≥ 0 > −𝐷.

Assumption E.15 holds since

𝒪𝑗,𝑥𝑓𝑗(𝑥− 𝑧) = 𝒯𝑗,𝑥ΨIMQ
𝑐′,𝛽′ (𝑥− 𝑧)

= ((𝜕𝑥𝑗
log 𝑝(𝑥) + 𝜕𝑥𝑗

log ΨIMQ
𝑐′,𝛽′ (𝑥− 𝑧))ΨIMQ

𝑐′,𝛽′ (𝑥− 𝑧)

≤ ((𝜕𝑥𝑗
log 𝑝(𝑥) + 𝜕𝑥𝑗

log ΨIMQ
𝑐′,𝛽′ (𝑥− 𝑧))

ΨIMQ
𝑐′,𝛽′ (𝑥− 𝑧)

ΨIMQ
𝑐′,𝛽′ (𝑧)

ΨIMQ
𝑐′,𝛽′ (𝑧). (D.10.1)

Assumption 5.H follows directly from the definition of 𝜈. Assumption E.16 trivially
holds for ‖·‖ = ‖·‖2, 𝑓𝑗(𝑅) = ((𝑐′)2 +𝑅2)𝛽

′ and 𝐶𝑓,𝑗 = 1.

Next, we verify that 𝒬IMQ(𝐶) ⊆ 𝒬(𝑏, 𝐶𝐵,𝑗, 𝐶𝒪,𝑗). It follows from Eq. (D.10.1) that

𝐵𝑗(𝑥, 𝑧) = (𝜕𝑥𝑗
log 𝑝(𝑥) + 𝜕𝑥𝑗

log ΨIMQ
𝑐′,𝛽′ (𝑥− 𝑧))

ΨIMQ
𝑐′,𝛽′ (𝑥− 𝑧)

ΨIMQ
𝑐′,𝛽′ (𝑧)

≤

(︃
𝐶1 + 𝐶2‖𝑥‖2 −

2𝛽′|𝑥𝑗 − 𝑧𝑗|
(𝑐′)2 + ‖𝑥− 𝑧‖22

)︃(︃
2

(𝑐′)2 + ‖𝑥− 𝑧‖22 + ‖𝑥‖22
(𝑐′)2 + ‖𝑧‖22

)︃−𝛽

≤ 2(𝐶1 + 𝐶2‖𝑥‖2 − 2𝛽′)(1 + ‖𝑥‖2/𝑐
′)−2𝛽.

Hence for some 𝑐′′ > 0, (𝑄𝑁𝐵𝑗)(𝑧) ≤ 𝑐′′, verifying Assumption E.17 for 𝑏 = 0. In
addition,

(1 + 𝜔𝑗)
−1|𝑄𝑁(𝒪𝑗,𝑥𝑒

𝑖𝜔·𝑥)| = (1 + 𝜔𝑗)
−1|𝑄𝑁((𝜕𝑥𝑗

log 𝑝(𝑥)− 𝑖𝜔𝑗)𝑒
−𝑖𝜔·𝑥)|

≤ 𝑄𝑁(𝐶1 + 𝐶2‖𝑥‖2) + 1

≤ 𝐶1 + 𝐶2𝐶 + 1,

verifying Assumption E.18.

Finally, we verify that 𝜌 = Ψ̂IMQ
𝑐,𝛽 /(Ψ̂IMQ

𝑐′,𝛽′ )2 ∈ 𝐿𝑡, where 𝑡 = 𝑟/(2− 𝑟) = −𝐷/(𝐷 +
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4𝛽′𝜉). In fact,

Ψ̂IMQ
𝑐,𝛽 /(Ψ̂IMQ

𝑐′,𝛽′ )
2 ∼̇ ‖𝜔‖−2(𝛽+𝐷/2−1/2)/2+2(𝛽′+𝐷/2−1/2))

2 𝑒2(−𝑐/2+𝑐′)‖𝜔‖2 , ‖𝜔‖2 →∞ and

∼̇ ‖𝜔‖2(2𝛽
′+𝐷)+−(2𝛽+𝐷)+

2 = ‖𝜔‖−(2𝛽+𝐷)
2 ‖𝜔‖2 → 0,

so 𝜌 ∈ 𝐿𝑡 whenever 𝑐/2 > 𝑐′ and

𝐷

(𝐷 + 4𝛽′𝜉)
(2𝛽 +𝐷) > −𝐷 ⇔ −𝛽/(2𝜉)−𝐷/(2𝜉) > 𝛽′.

Both these conditions hold by construction. Thus, the MMD lower bound on the
GMMD follows from Eq. (5.3).

D.11 Proofs of Theorems 5.4.11 and 5.4.12: Asymp-
totics of fGMMD

The proofs of Theorems 5.4.11 and 5.4.12 rely on the following asymptotic result.

Theorem D.11.1. Let 𝜉𝑖𝑗 : R𝑑 → R, 𝑖 = 1, . . . , 𝐼, 𝑗 = 1, . . . , 𝐽 , be a collection of
functions and let 𝑋𝑛

i.i.d.∼ 𝑄, where 𝑄 is absolutely continuous with respect to Lebesgue
measure. Define the random variables 𝜉𝑛𝑖𝑗 := 𝜉𝑖𝑗(𝑋𝑛) and, for 𝑟, 𝑠 ≥ 1, the random
variable

𝑇𝑟,𝑠,𝑁 :=

(︂∑︀𝐼
𝑖=1

(︁∑︀𝐽
𝑗=1

⃒⃒⃒
𝑁−1

∑︀𝑁
𝑛=1 𝜉𝑛𝑖𝑗

⃒⃒⃒𝑟)︁𝑠/𝑟)︂2/𝑠

. (D.11.1)

Assume that for all 𝑖 ∈ [𝐼] and 𝑗 ∈ [𝐽 ], 𝜉1𝑖𝑗 has a finite second moment. Then the
following statements hold.

1. If 𝜇𝑖𝑗 := 𝑄(𝜉𝑠𝑗) = 0 for all 𝑖 and 𝑗, then

𝑁𝑇𝑟,𝑠,𝑁
𝒟

=⇒
(︂∑︀𝐼

𝑖=1

(︁∑︀𝐽
𝑗=1|𝜁𝑖𝑗|

𝑟
)︁𝑠/𝑟)︂2/𝑠

as 𝑁 →∞,

where 𝜁 ∼ N(0,Σ) and Σ𝑖𝑗,𝑖′𝑗′ := Cov(𝜉1𝑖𝑗, 𝜉1𝑖′𝑗′).

2. If 𝜇𝑖𝑗 ̸= 0 for some 𝑖 and 𝑗, then

𝑁𝑇𝑟,𝑠,𝑁
𝑎.𝑠.→ ∞ as 𝑁 →∞.

Proof Let 𝑉𝑁,𝑖𝑗 = 𝑁−1/2
∑︀𝑁

𝑛=1 𝜉𝑛𝑖𝑗. Since the 𝜉1𝑖𝑗 have finite second moments,
‖Σ‖ <∞. Hence, by the multivariate CLT,

𝑉𝑁 −𝑁1/2𝜇
𝒟

=⇒ N(0,Σ).
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Observe that 𝑁𝑇𝑟,𝑠,𝑁 = (
∑︀𝐼

𝑖=1(
∑︀𝐽

𝑗=1 |𝑉𝑁,𝑖𝑗|𝑟)𝑠/𝑟)2/𝑠. Hence if 𝜇 = 0, Eq. (D.11.1)
follows from the continuous mapping theorem.

Assume 𝜇𝑖𝑗 ̸= 0 for some 𝑖 and 𝑗. By the strong law of large numbers, 𝑁−1/2𝑉𝑁
𝑎.𝑠.→

𝜇. Together with the continuous mapping theorem conclude that 𝑇𝑝,𝑁
𝑎.𝑠.→ 𝑐 for some

𝑐 > 0. Hence 𝑁𝑇𝑝,𝑁
𝑎.𝑠.→ ∞.

When 𝑟 = 𝑠 = 2, the fGMMD is a degenerate 𝑉 -statistic, and we recover its
well-known distribution [125, Sec. 6.4, Thm. B] as a corollary. A similar result was
used in Jitkrittum et al. [75] to construct the asymptotic null for the FSSD, which is
degenerate 𝑈 -statistic.

Corollary D.11.2. Under the hypotheses of Theorem D.11.1,

𝑁𝑇2,2,𝑁
𝒟

=⇒
∑︀𝐼

𝑖=1

∑︀𝐽
𝑗=1 𝜆𝑖𝑗𝜔

2
𝑖𝑗 as 𝑁 →∞,

where 𝜆 = eigs(Σ) and 𝜔𝑖𝑗
i.i.d.∼ N(0, 1).

To apply these results to fGMMDs, take 𝑠 = 2 and apply Theorem D.11.1 with
𝜉𝑚𝑗 = 𝜉𝑟,𝑚𝑗. We can apply Theorem D.11.1. Since 𝑃 (𝜉𝑟,𝑚𝑗) = 0 for all 𝑚 ∈ [𝑀 ]
and 𝑗 ∈ [𝐽 ], under 𝐻0 : 𝑄 = 𝑃 part 1 of Theorem D.11.1 holds. Furthermore, when
𝑄 ̸= 𝑃 , there exists some 𝑚 and 𝑗 for which 𝑄(𝜉𝑟,𝑚𝑗) ̸= 0. Thus, under 𝐻1 : 𝑄 ̸= 𝑃
part 2 of Theorem D.11.1 holds.

The proof of Theorem 5.4.12 is essentially identical to that of Jitkrittum et al. [75,
Theorem 3].

D.12 Hyperbolic Secant Properties

Recall that the hyperbolic secant function is given by sech(𝑎) = 2
𝑒𝑎+𝑒−𝑎 . For 𝑥 ∈ R𝑑,

define the hyperbolic secant kernel

Φsech
𝑎 (𝑥) := sech

(︂√︂
𝜋

2
𝑎𝑥

)︂
:=

𝑑∏︁
𝑖=1

sech

(︂√︂
𝜋

2
𝑎𝑥𝑖

)︂
.

It is a standard result that

Φ̂sech
𝑎 (𝜔) = Φsech

1/𝑎 (𝜔). (D.12.1)

We can relate Φsech
𝑎 (𝑥)𝜉 to Φsech

𝑎𝜉 (𝑥), but to do so we will need the following standard
result:

Lemma D.12.1. For 𝑎, 𝑏 ≥ 0 and 𝜉 ∈ (0, 1],

𝑎𝜉 + 𝑏𝜉

21−𝜉
≤ (𝑎+ 𝑏)𝜉 ≤ 𝑎𝜉 + 𝑏𝜉.
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Proof The lower bound follows from an application of Jensen’s inequality and the
upper bound follows from the concavity of 𝑎 ↦→ 𝑎𝜉.

Proposition D.12.2. For 𝜉 ∈ (0, 1],

Φsech
𝑎 (𝑥)𝜉 ≤ Φsech

𝑎 (𝜉𝑥) = Φsech
𝑎𝜉 (𝑥) ≤ 2𝑑(1−𝜉)Φsech

𝑎 (𝑥)𝜉

2−𝑑(1−𝜉)Φ̂sech
𝑎/𝜉 (𝑥) ≤ Φ̂sech

𝑎 (𝑥)𝜉 ≤ Φ̂sech
𝑎/𝜉 (𝑥).

Thus, Φsech
𝑎/𝜉 is equivalent to (Φsech

𝑎 )(𝜉).

Proof Apply Lemma D.12.1 and Eq. (D.12.1).

Proposition D.12.3. For all 𝑥, 𝑦 ∈ R𝑑 and 𝑎 > 0,

Φsech
𝑎 (𝑥− 𝑧) ≤ 𝑒

√
𝜋
2
𝑎‖𝑥‖1Φsech

𝑎 (𝑧).

Proof Take 𝑑 = 1 since the general case follows immediately. Without loss of
generality assume that 𝑥 ≥ 0 and let 𝑎′ =

√︀
𝜋
2
𝑎. Then

Φsech
𝑎 (𝑥− 𝑧)

Φsech
𝑎 (𝑧)

=
𝑒𝑎

′𝑧 + 𝑒−𝑎′𝑧

𝑒𝑎′(𝑥−𝑧) + 𝑒−𝑎′(𝑥−𝑧)
=

𝑒𝑎
′𝑧 + 𝑒−𝑎′𝑧

𝑒−𝑎′𝑧 + 𝑒2𝑎′𝑥𝑒𝑎′𝑧
𝑒𝑎

′𝑥 ≤ 𝑒𝑎
′𝑥.

D.13 Concentration Inequalities

Theorem D.13.1 (Chung and Lu [33, Theorem 2.9]). Let 𝑋1, . . . , 𝑋𝑚 be independent
random variables satisfying 𝑋𝑖 > −𝐴 for all 𝑖 = 1, . . . ,𝑚. Let 𝑋 :=

∑︀𝑚
𝑖=1𝑋𝑖 and

𝑋2 :=
∑︀𝑚

𝑖=1 E[𝑋2
𝑖 ]. Then for all 𝑡 > 0,

P(𝑋 ≤ E[𝑋]− 𝑡) ≤ 𝑒−
1
2
𝑡2/(𝑋2+𝐴𝑡/3).

Let 𝑋̂ := 1
𝑚

∑︀𝑚
𝑖=1𝑋𝑖.

Corollary D.13.2. Let 𝑋1, . . . , 𝑋𝑚 be i.i.d. nonnegative random variables with mean
𝑋̄ := E[𝑋1]. Assume there exists 𝑐 > 0 and 𝛾 ∈ [0, 2] such that E[𝑋2

1 ] ≤ 𝑐𝑋̄2−𝛾. If,
for 𝛿 ∈ (0, 1) and 𝜀 ∈ (0, 1),

𝑚 ≥ 2𝑐 log(1/𝛿)

𝜀2
𝑋̄−𝛾,

then with probability at least 1− 𝛿, 𝑋̂ ≥ (1− 𝜀)𝑋̄.
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Proof Applying Theorem D.13.1 with 𝑡 = 𝑚𝜀𝑋̄ and 𝐴 = 0 yields

P(𝑋̂ ≤ 𝜀𝑋̄) ≤ 𝑒−
1
2𝑐

𝜀2𝑚𝑋̄𝛾

.

Upper bounding the right hand side by 𝛿 and solving for 𝑚 yields the result.

Corollary D.13.3. Let 𝑋1, . . . , 𝑋𝑚 be i.i.d. nonnegative random variables with mean
𝑋̄ := E[𝑋1]. Assume there exists 𝑐 > 0 and 𝛾 ∈ [0, 2] such that E[𝑋2

1 ] ≤ 𝑐𝑋̄2−𝛾. Let
𝜖′ = |𝑋* − 𝑋̄| and assume 𝜖′ ≤ 𝜂𝑋* for some 𝜂 ∈ (0, 1). If, for 𝛿 ∈ (0, 1),

𝑚 ≥ 2𝑐 log(1/𝛿)

𝜀2
𝑋̄−𝛾,

then with probability at least 1 − 𝛿, 𝑋̂ ≥ (1 − 𝜀)𝑋*. In particular, if 𝜖′ ≤ 𝜎𝑋*
√
𝑛

and
𝑋* ≥ 𝜎2

𝜂2𝑛
, then with probability at least 1− 𝛿, 𝑋̂ ≥ (1− 𝜀)𝑋* as long as

𝑚 ≥ 2𝑐(1− 𝜂)2𝜂2𝛾

𝜀2𝜎2𝛾 log(1/𝛿)
𝑛𝛾.

Proof Apply Corollary D.13.2 with 𝜀𝑋*

𝑋̄
in place of 𝜀.

Example D.13.1. If we take 𝛾 = 1/4 and 𝜂 = 𝜀 = 1/2, then we need 𝑋* ≥ 4𝜎2

𝑛
and

𝑚 ≥
√
2 𝑐 log(1/𝛿)

𝜎1/2 𝑛1/4 to guarantee that 𝑋̂ ≥ 1
2
𝑋* with probability at least 1− 𝛿.
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