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1. Conceptually clear

• Bayesian methods are conceptually clear…

2. Easy to use

• …but often not easy to use…

3. Reliable

• …which makes them less reliable

• How to fix this? probabilistic programming

• Write down the model, but don’t worry about inference

• v1.0: BUGS/JAGS (Gibbs sampling)

• v2.0: Stan (HMC or variational inference or MAP estimation)

• Goal: integrate BNP priors into PPLs like Stan
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[Yu 2012]
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[Kottas 2008]

pathology

hard work!
automate inference with probabilistic programming
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with e.g. variational inference, HMC  
[Blei 06; Neal 10]

Problem: 
Wide variety of priors in 
BNP with no finite 
approximation

Contributions:
● 2 representation forms (7 reps total) that allow finite approximation 

of (normalized) completely random measures ( (N)CRMs )
● Approximation error analysis
● Computational complexity analysis (not in this talk)

All BNP priors

Priors with finite approx (new)

Previously studied priors
with finite approx (past work)

Inference in BNP models
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[Roychowdhury 15]

[Teh 07] 
[Paisley 12] 
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[Bondesson 82] 
[Roychowdhury 15]

[Ishwaran 01]

[Doshi-Velez 09] 
[Paisley 12]

[Broderick 14]

[Roychowdhury 15]

Sparse results for a few 
priors in BNP

No general theory
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completely random measure (CRM) 
(e.g. BP, 𝚪P) 

Normalize rates: normalized CRM 
(NCRM) (e.g. DP)

Captures a large class of useful priors in BNP

How do we pick a finite subset of the points?

Poisson point process with measure 𝜈(d𝜃 x d𝜓):
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Superposition representation 
infinite sum of homogenous 

CRMs, each with finite # of atoms  
(3 versions)

Series representation 
function of a homogenous  

Poisson point process 
(4 versions)

We describe 2 forms for sequential representations

Ordering of (N)CRM atoms

Theorem (H., Campbell, How, Broderick). 
Can generate (N)CRMs using all 7 sequential 
representations 
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They’re all useful in different circumstances

Sequential representation comparison

Why so many representations?

Series Reps Superposition Reps

B-Rep IL-Rep R-Rep T-Rep DB-Rep PL-Rep SB-Rep

Error 
Bound 
Decay

 ✓

(exp)

 ✓

(exp)

✓/✗ ✗  ✓

(exp)

 ✓

(exp)

✗

Ease of 
Analysis

✗ ✗✗ ✗ ✗ ✓ ✓ ✓
Generality ✓ ✓ ✓ ✓ ✓ ✓ ✓
Known # 
Atoms ✓ ✓ ✗ ✗ ✗ ✗ ✗
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Given Gamma process:

Exponential(𝜆) 
density!

Step 3: plug in!

Step 1: compute

Step 2: compute

Sequential representation 
example
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Given Gamma-Poisson process:

Integration by parts

Gamma expectation
Step 2: plug in!  

Error bound example

1

2

kpN,1 � pN,Kk1  1� exp

(
�N�

✓
��

1 + ��

◆K
)

⇠ N�

✓
��

1 + ��

◆K

, K ! 1

GK ⇠ Gamma(K, c)
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