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other signatures with age suggests that mutations associated with these
have been generated at different rates in different people, possibly as a
consequence of differing carcinogen exposures or after neoplastic
change has been initiated.

Mutational signatures with transcriptional strand bias
The efficiency of DNA damage and DNA maintenance processes can
differ between the transcribed and untranscribed strands of genes. The
most well known cause of this phenomenon is transcription-coupled
nucleotide excision repair (NER) that operates predominantly on the
transcribed strand of genes and is recruited by RNA polymerase II
when it encounters bulky DNA helix-distorting lesions12.

We re-extracted substitution mutational signatures incorporating
the transcriptional strand on which each mutation has taken place.
Because a mutation in a transcribed genomic region may be either on
the transcribed or the untranscribed strand, this generates a classifica-
tion with 192 mutation subclasses.

Several signatures showed substantial differences in mutation pre-
valence between transcribed and untranscribed strands (known as
transcriptional strand bias) (Fig. 5 and Supplementary Figs 89–95).
For example, signature 4 shows transcriptional strand bias for C.A
mutations (Fig. 5). Signature 4 is observed in lung adeno, squamous
and small cell carcinomas, head and neck squamous, and liver cancers
(Fig. 3), most of which are known to be caused by tobacco smoking.
Therefore, signature 4 is probably an imprint of the bulky DNA adducts
generated by polycyclic hydrocarbons found in tobacco smoke and
their removal by transcription-coupled NER13. The higher prevalence
of C.A mutations on transcribed compared to untranscribed strands is
consistent with the propensity of many tobacco carcinogens to form
adducts on guanine.

Similarly, signature 7, mainly found in malignant melanoma, shows
a higher prevalence of C.T mutations on the untranscribed compared
to the transcribed strands consistent with the formation, through ultra-
violet exposure, of pyrimidine dimers and other lesions which are known
to be repaired by transcription-coupled NER14.

Beyond these known examples of DNA damage processed by
transcription-coupled NER, other signatures show strong transcrip-
tional strand bias (5, 8, 10, 12, 16). Notably, signature 16, which is
characterized by T.C mutations at ApTpA, ApTpG and ApTpT
trinucleotides and is observed in hepatocellular carcinomas, shows
the strongest transcriptional strand bias of any signature, with T.C
mutations occurring almost exclusively on the transcribed strand

(Fig. 5). Similarly, signature 12, which features T.C mutations at
NpTpN trinucleotides, also found in hepatocellular carcinomas,
shows strong transcriptional strand bias with more T.C mutations
on the transcribed than untranscribed strands (Supplementary Fig. 94).
On the assumption that the transcriptional strand biases in signa-
tures 12 and 16 are introduced by transcription-coupled NER, these
currently unexplained signatures may be the result of bulky DNA
helix-distorting adducts on adenine. However, there is no previous
basis for invoking transcription-coupled NER in the genesis of these
signatures and other causes of transcriptional strand bias may exist.

Mutational signatures with insertions and deletions
We re-extracted the mutational signatures including, in addition to
the 96 substitution types, two further classes of mutation: indels at
short nucleotide repeats and indels with overlapping microhomology
at breakpoint junctions. Three of the 21 base substitution signatures
associated with large numbers of indels. Signature 6, which is char-
acterized predominantly by C.T at NpCpG mutations, but is distinct
from signature 1A/B, contributes very large numbers of substitutions
and small indels (mostly of 1 bp) at nucleotide repeats to subsets of
colorectal, uterine, liver, kidney, prostate, oesophageal and pancreatic
cancers. This pattern of indels, often termed ‘microsatellite instability’,
is characteristic of cancers with defective DNA mismatch repair15. Con-
sistent with this explanation, the presence of signature 6 was strongly
associated with the inactivation of DNA mismatch repair genes in
colorectal cancer (P 5 3.3 3 1025).

Signature 15 also contributes very large numbers of substitutions
and small indels at nucleotide repeats but, compared to signature 6,
exhibits greater prominence of C.T at GpCpN trinucleotides.
Signature 15 was found in several samples of lung and stomach cancer
and its origin is currently unknown.

By contrast, substantial numbers of larger deletions (up to 50 bp)
with overlapping microhomology at breakpoint junctions were found
in breast, ovarian and pancreatic cancer cases with major contribu-
tions from signature 3. A subset of cancer cases of these three classes is
known to be due to inactivating mutations in BRCA1 and BRCA2, and
the presence of signature 3 was strongly associated with BRCA1 and
BRCA2 mutations within the individual cancer types (P 5 1.6 3 1028

for breast cancer and P 5 0.02 for pancreatic cancer)6. Indeed, almost
all cases with BRCA1 and BRCA2 mutations showed a large contri-
bution from signature 3. However, some cases with a substantial con-
tribution from signature 3 did not have BRCA1 and BRCA2 mutations,

!"!!!!

!#$#!!

!#$&#!!

!#$&!!

!#$'#!!

Signature 1620

10

0

C>A

P
er

ce
nt

ag
e 

of
 m

ut
at

io
ns

C>G C>T T>A T>C

Transcribed strand
Untranscribed strand

T>G

Signature 7
20

10

0

!"!!!!

!#$#!!

!#$&#!!

!#$&!!

!#$'#!!

Signature 420

10

0

C>A C>G C>T T>A T>C T>G

Figure 5 | Selected mutational signatures with strong transcriptional strand
bias. Mutations are shown according to the 192 mutation classification
incorporating the substitution type, the sequence context immediately 59 and 39
to the mutated base and whether the mutated pyrimidine is on the transcribed
or untranscribed strand. The mutation types are displayed on the horizontal
axis, whereas the vertical axis depicts the percentage of mutations attributed to a
specific mutation type. A higher resolution version of all mutational signatures
with strong transcriptional strand bias is found respectively in Supplementary
Figs 89–95.

CervixBreast

0

10

20

30

40

50

60 Signature 1B
Signature 2

CLL Lung adenocarcinoma

Colorectum

Melanoma

Sample Sample Sample
0

50

150

200

250

300 Signature 1B
Signature 7
Signature 11
Other

0

10

20

30

40

50

60 Signature 1B
Signature 2
Signature 4
Signature 5
Other

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

5

10

15

20

25

N
o.

 m
ut

at
io

ns
 p

er
 M

b
N

o.
 m

ut
at

io
ns

 p
er

 M
b

N
o.

 m
ut

at
io

ns
 p

er
 M

b
N

o.
 m

ut
at

io
ns

 p
er

 M
b

N
o.

 m
ut

at
io

ns
 p

er
 M

b
N

o.
 m

ut
at

io
ns

 p
er

 M
b

Signature 1B
Signature 2
Signature 3
Signature 8

Other
Signature 13

0

35

70

105

140

175

210 Signature 1B
Signature 6
Signature 10
Other

Signature 1B
Signature 2
Signature 9

100

Figure 4 | The contributions of mutational signatures to individual cancers
of selected cancer types. Each bar represents a typical selected sample from the
respective cancer type and the vertical axis denotes the number of mutations
per megabase. Contributions across all cancer samples could be found in
Supplementary Figs 29–58. Summary of the total contributions for all operative
mutational processes in a cancer type can be found in Supplementary Figs 59–
88. ‘Other’ indicates mutational signatures for which we were not able to
perform validation or for which validation failed (Supplementary Figs 24–28).
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other signatures with age suggests that mutations associated with these
have been generated at different rates in different people, possibly as a
consequence of differing carcinogen exposures or after neoplastic
change has been initiated.

Mutational signatures with transcriptional strand bias
The efficiency of DNA damage and DNA maintenance processes can
differ between the transcribed and untranscribed strands of genes. The
most well known cause of this phenomenon is transcription-coupled
nucleotide excision repair (NER) that operates predominantly on the
transcribed strand of genes and is recruited by RNA polymerase II
when it encounters bulky DNA helix-distorting lesions12.

We re-extracted substitution mutational signatures incorporating
the transcriptional strand on which each mutation has taken place.
Because a mutation in a transcribed genomic region may be either on
the transcribed or the untranscribed strand, this generates a classifica-
tion with 192 mutation subclasses.

Several signatures showed substantial differences in mutation pre-
valence between transcribed and untranscribed strands (known as
transcriptional strand bias) (Fig. 5 and Supplementary Figs 89–95).
For example, signature 4 shows transcriptional strand bias for C.A
mutations (Fig. 5). Signature 4 is observed in lung adeno, squamous
and small cell carcinomas, head and neck squamous, and liver cancers
(Fig. 3), most of which are known to be caused by tobacco smoking.
Therefore, signature 4 is probably an imprint of the bulky DNA adducts
generated by polycyclic hydrocarbons found in tobacco smoke and
their removal by transcription-coupled NER13. The higher prevalence
of C.A mutations on transcribed compared to untranscribed strands is
consistent with the propensity of many tobacco carcinogens to form
adducts on guanine.

Similarly, signature 7, mainly found in malignant melanoma, shows
a higher prevalence of C.T mutations on the untranscribed compared
to the transcribed strands consistent with the formation, through ultra-
violet exposure, of pyrimidine dimers and other lesions which are known
to be repaired by transcription-coupled NER14.

Beyond these known examples of DNA damage processed by
transcription-coupled NER, other signatures show strong transcrip-
tional strand bias (5, 8, 10, 12, 16). Notably, signature 16, which is
characterized by T.C mutations at ApTpA, ApTpG and ApTpT
trinucleotides and is observed in hepatocellular carcinomas, shows
the strongest transcriptional strand bias of any signature, with T.C
mutations occurring almost exclusively on the transcribed strand

(Fig. 5). Similarly, signature 12, which features T.C mutations at
NpTpN trinucleotides, also found in hepatocellular carcinomas,
shows strong transcriptional strand bias with more T.C mutations
on the transcribed than untranscribed strands (Supplementary Fig. 94).
On the assumption that the transcriptional strand biases in signa-
tures 12 and 16 are introduced by transcription-coupled NER, these
currently unexplained signatures may be the result of bulky DNA
helix-distorting adducts on adenine. However, there is no previous
basis for invoking transcription-coupled NER in the genesis of these
signatures and other causes of transcriptional strand bias may exist.

Mutational signatures with insertions and deletions
We re-extracted the mutational signatures including, in addition to
the 96 substitution types, two further classes of mutation: indels at
short nucleotide repeats and indels with overlapping microhomology
at breakpoint junctions. Three of the 21 base substitution signatures
associated with large numbers of indels. Signature 6, which is char-
acterized predominantly by C.T at NpCpG mutations, but is distinct
from signature 1A/B, contributes very large numbers of substitutions
and small indels (mostly of 1 bp) at nucleotide repeats to subsets of
colorectal, uterine, liver, kidney, prostate, oesophageal and pancreatic
cancers. This pattern of indels, often termed ‘microsatellite instability’,
is characteristic of cancers with defective DNA mismatch repair15. Con-
sistent with this explanation, the presence of signature 6 was strongly
associated with the inactivation of DNA mismatch repair genes in
colorectal cancer (P 5 3.3 3 1025).

Signature 15 also contributes very large numbers of substitutions
and small indels at nucleotide repeats but, compared to signature 6,
exhibits greater prominence of C.T at GpCpN trinucleotides.
Signature 15 was found in several samples of lung and stomach cancer
and its origin is currently unknown.

By contrast, substantial numbers of larger deletions (up to 50 bp)
with overlapping microhomology at breakpoint junctions were found
in breast, ovarian and pancreatic cancer cases with major contribu-
tions from signature 3. A subset of cancer cases of these three classes is
known to be due to inactivating mutations in BRCA1 and BRCA2, and
the presence of signature 3 was strongly associated with BRCA1 and
BRCA2 mutations within the individual cancer types (P 5 1.6 3 1028

for breast cancer and P 5 0.02 for pancreatic cancer)6. Indeed, almost
all cases with BRCA1 and BRCA2 mutations showed a large contri-
bution from signature 3. However, some cases with a substantial con-
tribution from signature 3 did not have BRCA1 and BRCA2 mutations,
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Figure 5 | Selected mutational signatures with strong transcriptional strand
bias. Mutations are shown according to the 192 mutation classification
incorporating the substitution type, the sequence context immediately 59 and 39
to the mutated base and whether the mutated pyrimidine is on the transcribed
or untranscribed strand. The mutation types are displayed on the horizontal
axis, whereas the vertical axis depicts the percentage of mutations attributed to a
specific mutation type. A higher resolution version of all mutational signatures
with strong transcriptional strand bias is found respectively in Supplementary
Figs 89–95.
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Figure 4 | The contributions of mutational signatures to individual cancers
of selected cancer types. Each bar represents a typical selected sample from the
respective cancer type and the vertical axis denotes the number of mutations
per megabase. Contributions across all cancer samples could be found in
Supplementary Figs 29–58. Summary of the total contributions for all operative
mutational processes in a cancer type can be found in Supplementary Figs 59–
88. ‘Other’ indicates mutational signatures for which we were not able to
perform validation or for which validation failed (Supplementary Figs 24–28).
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other signatures with age suggests that mutations associated with these
have been generated at different rates in different people, possibly as a
consequence of differing carcinogen exposures or after neoplastic
change has been initiated.

Mutational signatures with transcriptional strand bias
The efficiency of DNA damage and DNA maintenance processes can
differ between the transcribed and untranscribed strands of genes. The
most well known cause of this phenomenon is transcription-coupled
nucleotide excision repair (NER) that operates predominantly on the
transcribed strand of genes and is recruited by RNA polymerase II
when it encounters bulky DNA helix-distorting lesions12.

We re-extracted substitution mutational signatures incorporating
the transcriptional strand on which each mutation has taken place.
Because a mutation in a transcribed genomic region may be either on
the transcribed or the untranscribed strand, this generates a classifica-
tion with 192 mutation subclasses.

Several signatures showed substantial differences in mutation pre-
valence between transcribed and untranscribed strands (known as
transcriptional strand bias) (Fig. 5 and Supplementary Figs 89–95).
For example, signature 4 shows transcriptional strand bias for C.A
mutations (Fig. 5). Signature 4 is observed in lung adeno, squamous
and small cell carcinomas, head and neck squamous, and liver cancers
(Fig. 3), most of which are known to be caused by tobacco smoking.
Therefore, signature 4 is probably an imprint of the bulky DNA adducts
generated by polycyclic hydrocarbons found in tobacco smoke and
their removal by transcription-coupled NER13. The higher prevalence
of C.A mutations on transcribed compared to untranscribed strands is
consistent with the propensity of many tobacco carcinogens to form
adducts on guanine.

Similarly, signature 7, mainly found in malignant melanoma, shows
a higher prevalence of C.T mutations on the untranscribed compared
to the transcribed strands consistent with the formation, through ultra-
violet exposure, of pyrimidine dimers and other lesions which are known
to be repaired by transcription-coupled NER14.

Beyond these known examples of DNA damage processed by
transcription-coupled NER, other signatures show strong transcrip-
tional strand bias (5, 8, 10, 12, 16). Notably, signature 16, which is
characterized by T.C mutations at ApTpA, ApTpG and ApTpT
trinucleotides and is observed in hepatocellular carcinomas, shows
the strongest transcriptional strand bias of any signature, with T.C
mutations occurring almost exclusively on the transcribed strand

(Fig. 5). Similarly, signature 12, which features T.C mutations at
NpTpN trinucleotides, also found in hepatocellular carcinomas,
shows strong transcriptional strand bias with more T.C mutations
on the transcribed than untranscribed strands (Supplementary Fig. 94).
On the assumption that the transcriptional strand biases in signa-
tures 12 and 16 are introduced by transcription-coupled NER, these
currently unexplained signatures may be the result of bulky DNA
helix-distorting adducts on adenine. However, there is no previous
basis for invoking transcription-coupled NER in the genesis of these
signatures and other causes of transcriptional strand bias may exist.

Mutational signatures with insertions and deletions
We re-extracted the mutational signatures including, in addition to
the 96 substitution types, two further classes of mutation: indels at
short nucleotide repeats and indels with overlapping microhomology
at breakpoint junctions. Three of the 21 base substitution signatures
associated with large numbers of indels. Signature 6, which is char-
acterized predominantly by C.T at NpCpG mutations, but is distinct
from signature 1A/B, contributes very large numbers of substitutions
and small indels (mostly of 1 bp) at nucleotide repeats to subsets of
colorectal, uterine, liver, kidney, prostate, oesophageal and pancreatic
cancers. This pattern of indels, often termed ‘microsatellite instability’,
is characteristic of cancers with defective DNA mismatch repair15. Con-
sistent with this explanation, the presence of signature 6 was strongly
associated with the inactivation of DNA mismatch repair genes in
colorectal cancer (P 5 3.3 3 1025).

Signature 15 also contributes very large numbers of substitutions
and small indels at nucleotide repeats but, compared to signature 6,
exhibits greater prominence of C.T at GpCpN trinucleotides.
Signature 15 was found in several samples of lung and stomach cancer
and its origin is currently unknown.

By contrast, substantial numbers of larger deletions (up to 50 bp)
with overlapping microhomology at breakpoint junctions were found
in breast, ovarian and pancreatic cancer cases with major contribu-
tions from signature 3. A subset of cancer cases of these three classes is
known to be due to inactivating mutations in BRCA1 and BRCA2, and
the presence of signature 3 was strongly associated with BRCA1 and
BRCA2 mutations within the individual cancer types (P 5 1.6 3 1028

for breast cancer and P 5 0.02 for pancreatic cancer)6. Indeed, almost
all cases with BRCA1 and BRCA2 mutations showed a large contri-
bution from signature 3. However, some cases with a substantial con-
tribution from signature 3 did not have BRCA1 and BRCA2 mutations,

!"!!!!

!#$#!!

!#$&#!!

!#$&!!

!#$'#!!

Signature 1620

10

0

C>A

P
er

ce
nt

ag
e 

of
 m

ut
at

io
ns

C>G C>T T>A T>C

Transcribed strand
Untranscribed strand

T>G

Signature 7
20

10

0

!"!!!!

!#$#!!

!#$&#!!

!#$&!!

!#$'#!!

Signature 420

10

0

C>A C>G C>T T>A T>C T>G

Figure 5 | Selected mutational signatures with strong transcriptional strand
bias. Mutations are shown according to the 192 mutation classification
incorporating the substitution type, the sequence context immediately 59 and 39
to the mutated base and whether the mutated pyrimidine is on the transcribed
or untranscribed strand. The mutation types are displayed on the horizontal
axis, whereas the vertical axis depicts the percentage of mutations attributed to a
specific mutation type. A higher resolution version of all mutational signatures
with strong transcriptional strand bias is found respectively in Supplementary
Figs 89–95.
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Figure 4 | The contributions of mutational signatures to individual cancers
of selected cancer types. Each bar represents a typical selected sample from the
respective cancer type and the vertical axis denotes the number of mutations
per megabase. Contributions across all cancer samples could be found in
Supplementary Figs 29–58. Summary of the total contributions for all operative
mutational processes in a cancer type can be found in Supplementary Figs 59–
88. ‘Other’ indicates mutational signatures for which we were not able to
perform validation or for which validation failed (Supplementary Figs 24–28).
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other signatures with age suggests that mutations associated with these
have been generated at different rates in different people, possibly as a
consequence of differing carcinogen exposures or after neoplastic
change has been initiated.

Mutational signatures with transcriptional strand bias
The efficiency of DNA damage and DNA maintenance processes can
differ between the transcribed and untranscribed strands of genes. The
most well known cause of this phenomenon is transcription-coupled
nucleotide excision repair (NER) that operates predominantly on the
transcribed strand of genes and is recruited by RNA polymerase II
when it encounters bulky DNA helix-distorting lesions12.

We re-extracted substitution mutational signatures incorporating
the transcriptional strand on which each mutation has taken place.
Because a mutation in a transcribed genomic region may be either on
the transcribed or the untranscribed strand, this generates a classifica-
tion with 192 mutation subclasses.

Several signatures showed substantial differences in mutation pre-
valence between transcribed and untranscribed strands (known as
transcriptional strand bias) (Fig. 5 and Supplementary Figs 89–95).
For example, signature 4 shows transcriptional strand bias for C.A
mutations (Fig. 5). Signature 4 is observed in lung adeno, squamous
and small cell carcinomas, head and neck squamous, and liver cancers
(Fig. 3), most of which are known to be caused by tobacco smoking.
Therefore, signature 4 is probably an imprint of the bulky DNA adducts
generated by polycyclic hydrocarbons found in tobacco smoke and
their removal by transcription-coupled NER13. The higher prevalence
of C.A mutations on transcribed compared to untranscribed strands is
consistent with the propensity of many tobacco carcinogens to form
adducts on guanine.

Similarly, signature 7, mainly found in malignant melanoma, shows
a higher prevalence of C.T mutations on the untranscribed compared
to the transcribed strands consistent with the formation, through ultra-
violet exposure, of pyrimidine dimers and other lesions which are known
to be repaired by transcription-coupled NER14.

Beyond these known examples of DNA damage processed by
transcription-coupled NER, other signatures show strong transcrip-
tional strand bias (5, 8, 10, 12, 16). Notably, signature 16, which is
characterized by T.C mutations at ApTpA, ApTpG and ApTpT
trinucleotides and is observed in hepatocellular carcinomas, shows
the strongest transcriptional strand bias of any signature, with T.C
mutations occurring almost exclusively on the transcribed strand

(Fig. 5). Similarly, signature 12, which features T.C mutations at
NpTpN trinucleotides, also found in hepatocellular carcinomas,
shows strong transcriptional strand bias with more T.C mutations
on the transcribed than untranscribed strands (Supplementary Fig. 94).
On the assumption that the transcriptional strand biases in signa-
tures 12 and 16 are introduced by transcription-coupled NER, these
currently unexplained signatures may be the result of bulky DNA
helix-distorting adducts on adenine. However, there is no previous
basis for invoking transcription-coupled NER in the genesis of these
signatures and other causes of transcriptional strand bias may exist.

Mutational signatures with insertions and deletions
We re-extracted the mutational signatures including, in addition to
the 96 substitution types, two further classes of mutation: indels at
short nucleotide repeats and indels with overlapping microhomology
at breakpoint junctions. Three of the 21 base substitution signatures
associated with large numbers of indels. Signature 6, which is char-
acterized predominantly by C.T at NpCpG mutations, but is distinct
from signature 1A/B, contributes very large numbers of substitutions
and small indels (mostly of 1 bp) at nucleotide repeats to subsets of
colorectal, uterine, liver, kidney, prostate, oesophageal and pancreatic
cancers. This pattern of indels, often termed ‘microsatellite instability’,
is characteristic of cancers with defective DNA mismatch repair15. Con-
sistent with this explanation, the presence of signature 6 was strongly
associated with the inactivation of DNA mismatch repair genes in
colorectal cancer (P 5 3.3 3 1025).

Signature 15 also contributes very large numbers of substitutions
and small indels at nucleotide repeats but, compared to signature 6,
exhibits greater prominence of C.T at GpCpN trinucleotides.
Signature 15 was found in several samples of lung and stomach cancer
and its origin is currently unknown.

By contrast, substantial numbers of larger deletions (up to 50 bp)
with overlapping microhomology at breakpoint junctions were found
in breast, ovarian and pancreatic cancer cases with major contribu-
tions from signature 3. A subset of cancer cases of these three classes is
known to be due to inactivating mutations in BRCA1 and BRCA2, and
the presence of signature 3 was strongly associated with BRCA1 and
BRCA2 mutations within the individual cancer types (P 5 1.6 3 1028

for breast cancer and P 5 0.02 for pancreatic cancer)6. Indeed, almost
all cases with BRCA1 and BRCA2 mutations showed a large contri-
bution from signature 3. However, some cases with a substantial con-
tribution from signature 3 did not have BRCA1 and BRCA2 mutations,
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Figure 5 | Selected mutational signatures with strong transcriptional strand
bias. Mutations are shown according to the 192 mutation classification
incorporating the substitution type, the sequence context immediately 59 and 39
to the mutated base and whether the mutated pyrimidine is on the transcribed
or untranscribed strand. The mutation types are displayed on the horizontal
axis, whereas the vertical axis depicts the percentage of mutations attributed to a
specific mutation type. A higher resolution version of all mutational signatures
with strong transcriptional strand bias is found respectively in Supplementary
Figs 89–95.
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Figure 4 | The contributions of mutational signatures to individual cancers
of selected cancer types. Each bar represents a typical selected sample from the
respective cancer type and the vertical axis denotes the number of mutations
per megabase. Contributions across all cancer samples could be found in
Supplementary Figs 29–58. Summary of the total contributions for all operative
mutational processes in a cancer type can be found in Supplementary Figs 59–
88. ‘Other’ indicates mutational signatures for which we were not able to
perform validation or for which validation failed (Supplementary Figs 24–28).
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other signatures with age suggests that mutations associated with these
have been generated at different rates in different people, possibly as a
consequence of differing carcinogen exposures or after neoplastic
change has been initiated.

Mutational signatures with transcriptional strand bias
The efficiency of DNA damage and DNA maintenance processes can
differ between the transcribed and untranscribed strands of genes. The
most well known cause of this phenomenon is transcription-coupled
nucleotide excision repair (NER) that operates predominantly on the
transcribed strand of genes and is recruited by RNA polymerase II
when it encounters bulky DNA helix-distorting lesions12.

We re-extracted substitution mutational signatures incorporating
the transcriptional strand on which each mutation has taken place.
Because a mutation in a transcribed genomic region may be either on
the transcribed or the untranscribed strand, this generates a classifica-
tion with 192 mutation subclasses.

Several signatures showed substantial differences in mutation pre-
valence between transcribed and untranscribed strands (known as
transcriptional strand bias) (Fig. 5 and Supplementary Figs 89–95).
For example, signature 4 shows transcriptional strand bias for C.A
mutations (Fig. 5). Signature 4 is observed in lung adeno, squamous
and small cell carcinomas, head and neck squamous, and liver cancers
(Fig. 3), most of which are known to be caused by tobacco smoking.
Therefore, signature 4 is probably an imprint of the bulky DNA adducts
generated by polycyclic hydrocarbons found in tobacco smoke and
their removal by transcription-coupled NER13. The higher prevalence
of C.A mutations on transcribed compared to untranscribed strands is
consistent with the propensity of many tobacco carcinogens to form
adducts on guanine.

Similarly, signature 7, mainly found in malignant melanoma, shows
a higher prevalence of C.T mutations on the untranscribed compared
to the transcribed strands consistent with the formation, through ultra-
violet exposure, of pyrimidine dimers and other lesions which are known
to be repaired by transcription-coupled NER14.

Beyond these known examples of DNA damage processed by
transcription-coupled NER, other signatures show strong transcrip-
tional strand bias (5, 8, 10, 12, 16). Notably, signature 16, which is
characterized by T.C mutations at ApTpA, ApTpG and ApTpT
trinucleotides and is observed in hepatocellular carcinomas, shows
the strongest transcriptional strand bias of any signature, with T.C
mutations occurring almost exclusively on the transcribed strand

(Fig. 5). Similarly, signature 12, which features T.C mutations at
NpTpN trinucleotides, also found in hepatocellular carcinomas,
shows strong transcriptional strand bias with more T.C mutations
on the transcribed than untranscribed strands (Supplementary Fig. 94).
On the assumption that the transcriptional strand biases in signa-
tures 12 and 16 are introduced by transcription-coupled NER, these
currently unexplained signatures may be the result of bulky DNA
helix-distorting adducts on adenine. However, there is no previous
basis for invoking transcription-coupled NER in the genesis of these
signatures and other causes of transcriptional strand bias may exist.

Mutational signatures with insertions and deletions
We re-extracted the mutational signatures including, in addition to
the 96 substitution types, two further classes of mutation: indels at
short nucleotide repeats and indels with overlapping microhomology
at breakpoint junctions. Three of the 21 base substitution signatures
associated with large numbers of indels. Signature 6, which is char-
acterized predominantly by C.T at NpCpG mutations, but is distinct
from signature 1A/B, contributes very large numbers of substitutions
and small indels (mostly of 1 bp) at nucleotide repeats to subsets of
colorectal, uterine, liver, kidney, prostate, oesophageal and pancreatic
cancers. This pattern of indels, often termed ‘microsatellite instability’,
is characteristic of cancers with defective DNA mismatch repair15. Con-
sistent with this explanation, the presence of signature 6 was strongly
associated with the inactivation of DNA mismatch repair genes in
colorectal cancer (P 5 3.3 3 1025).

Signature 15 also contributes very large numbers of substitutions
and small indels at nucleotide repeats but, compared to signature 6,
exhibits greater prominence of C.T at GpCpN trinucleotides.
Signature 15 was found in several samples of lung and stomach cancer
and its origin is currently unknown.

By contrast, substantial numbers of larger deletions (up to 50 bp)
with overlapping microhomology at breakpoint junctions were found
in breast, ovarian and pancreatic cancer cases with major contribu-
tions from signature 3. A subset of cancer cases of these three classes is
known to be due to inactivating mutations in BRCA1 and BRCA2, and
the presence of signature 3 was strongly associated with BRCA1 and
BRCA2 mutations within the individual cancer types (P 5 1.6 3 1028

for breast cancer and P 5 0.02 for pancreatic cancer)6. Indeed, almost
all cases with BRCA1 and BRCA2 mutations showed a large contri-
bution from signature 3. However, some cases with a substantial con-
tribution from signature 3 did not have BRCA1 and BRCA2 mutations,
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Figure 5 | Selected mutational signatures with strong transcriptional strand
bias. Mutations are shown according to the 192 mutation classification
incorporating the substitution type, the sequence context immediately 59 and 39
to the mutated base and whether the mutated pyrimidine is on the transcribed
or untranscribed strand. The mutation types are displayed on the horizontal
axis, whereas the vertical axis depicts the percentage of mutations attributed to a
specific mutation type. A higher resolution version of all mutational signatures
with strong transcriptional strand bias is found respectively in Supplementary
Figs 89–95.
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Figure 4 | The contributions of mutational signatures to individual cancers
of selected cancer types. Each bar represents a typical selected sample from the
respective cancer type and the vertical axis denotes the number of mutations
per megabase. Contributions across all cancer samples could be found in
Supplementary Figs 29–58. Summary of the total contributions for all operative
mutational processes in a cancer type can be found in Supplementary Figs 59–
88. ‘Other’ indicates mutational signatures for which we were not able to
perform validation or for which validation failed (Supplementary Figs 24–28).
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Roadmap

• Approximate Bayes review


• Likelihood approximation and dataset compression


• Approximate sufficient statistics


• Accuracy guarantees
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PASS-GLM effective in distributed 
and streaming settings

• Distributed
• 6M observations with 1K 

covariates
• 16 seconds using 22 cores

• Streaming
• 40M observations with 20K 

covariates 
• Competitive with SGD
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Competitive approximation 
performance

• Webspam dataset


• N = 350,000


• d = 127
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Ongoing work: Poisson 
regression-type models 

for cancer genomics

N = ~10 million
d = 10-20

100x speed-up



Roadmap

• Approximate Bayes review


• Likelihood approximation and dataset compression


• Approximate sufficient statistics


• Accuracy guarantees
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• Problem: existing scalable methods lack accuracy guarantees

• Question: how do we measure closeness of the exact and approximate 
posteriors?

• Recall: want to compute means, variances, tail probabilities, etc. 

• Good choice of measure: 1- and 2-Wasserstein distances dW 

• Why? dW(p, q) small implies 

• means and variances close ✅

• (smoothed) tail probabilities close ✅

☠

!20

Meaningful
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Wasserstein distance with 
approximate likelihoods

Theorem (H. & Zou 2017, H. 2018). Assume

• π is “well-behaved” and

• 𝜀(θ) ≤ 𝜀.

Then                            .
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that
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• Similar results for other GLMs
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• Hierarchical models 

• Applications to a wider range of GLMs 

• Practitioner buy-in

• Very- and ultra-high dimensional parameter spaces

• Non-parametric models: 

• Coresets for Gaussian processes, connections to inducing point 
methods

• Combinatorial parameter spaces 
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Thanks!
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J. H. Huggins*, J. Zou*. Quantifying the Accuracy of 
Approximate Diffusions and Markov Chains. AISTATS, 2017. 

J. H. Huggins, T. Campbell, T. Broderick. Coresets for 
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from diffusions

Theorem (H. & Zou 2017, H. 2018). 

Assume the diffusion converges at rate r(t). 

Let I(r) = ∫r(t) dt. 

Then                                              .

• Proof techniques: 
• Stein’s method (for 1-Wasserstein version) 
• A coupling argument + Ito’s lemma (for 2-Wasserstein version) 
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