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Poisson processes and (N)CRMs

How do we generate infinitely many trait/rate points (¢, 6)?

Poisson process with intensity measure u(df x dy)

s;)aatge:e = v(df)H (dv)
0 . ©

! completely random measure (CRM)
? (eg BP, I'P) © = 220:1 Qk&pk

Tetle ?T ot 1o *
trait space (0

Normalize rates: normalized CRM
(NCRM) (e.g. DP)

Captures a large class of useful priors in BNP

How do we approximate with finite number of atoms?
[Kingman 93]
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® ) 4 ® ) T
Q Q o
O
O = y:k—l ‘9k5¢k O = Zkzl 91:5%
RN |
Truncated finite approx. Non-nested finite approx.

Ok = Zé(:l ‘97@5%@ Ox = Zé(:l 9K7k5¢k
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Approximations Bounds Approximations

Sparse results for a few
priors in BNP

Incomplete general theory
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Ordering of (N)CRM atoms
O=)>,_0kdy, » Ok = Yy Ok,

2 forms for sequential representations v(df)H (dy)

Series representation Superposition representation
function of a homogenous infinite sum of CRMs,
Poisson point process each with finite # of atoms
(4 versions) (3 versions)

Theorem (H., Campbell, How, Broderick).
Can generate (N)CRMs using all 7 sequential
representations
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Why so many representations?
They’re all useful in different circumstances
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Error

Bound ‘/ ‘/ ‘//X X ‘/ ‘/ X

Decay

ol X XX X X Vv Y
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X
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Sequential representation
example

Given Gamma process: () = v\ 1e ™

Step 1: compute ¢ := lim v (0) = YA

6—0
d
Step 2: compute f(0) .= R v (0)] = Ae M
do T
Step 3: plug in! Exponential(4)
density!

O = ZVke_F’f(ka, e~ ~ f, I' ~ PoissonP(c)
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Compare the distribution of the data
under full vs. truncated
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Choosing between the
seven representations

How close is our finite approximation?
[1(dO | X) xe f(X |O)(dO)

: 1
Truncation error: |pyv — vkl = 5 / PN,00 (X) — P, (X)[dX

Depends on number of observations N and truncation level K
As N gets larger, error increases
As K gets larger, error decreases

We develop new upper bounds
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Protobound s {$4 A

Leads to all the other truncation error bounds in this work

Lemma (H., Campbell, How, Broderick).
1PN .co—PN K1 < P (any datum selects a removed trait)

A A

Theorem (HCHB). The series Theorem (HCHB). The

rep error I1s bounded by superposition rep error Is
bounded by

HpN,oo — pN,KHl
<] —e" fooo E[7(7(V,u+Gx))" ]du HpN,oo - pN,KHl
: <1l—e Jo 7(0)" vy (d6)
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