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e Common theme: need scalability and accuracy

* Challenge: scalability and accuracy are competing goals

o “Eager” approach: scalable methods with pre-specified guarantees

e “Lazy” approach: validate algorithm’s output post hoc

 Bayesian inference: flexible modeling of data and uncertainty quantification

* This talk: scalable and accurate Bayesian inference
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Goal: learn about unobserved phenomenon (parameter)
of interest 6 [e.g. tumor size & malignancy]

Prior (expert) beliefs z,(0) about the phenomenon
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Bayesian inference

Goal: learn about unobserved phenomenon (parameter)
of interest 6 [e.g. tumor size & malignancy]

Prior (expert) beliefs z,(0) about the phenomenon
Observe data Y via measurement process p(Y | 6)

[e.g. ultrasound, biopsy]

Combine prior and observed data to form posterior
distribution via Bayes’ Theorem:

m(01Y) o< p(Y | 0)mo(0)

Benefits: coherent belief updates, uncertainty
quantification, flexible modeling, and more

Extract actionable information by computing
expectations [e.g. means and standard deviations]:
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Bayesian inference

Goal: learn about unobserved phenomenon (parameter)
of interest 6 [e.g. tumor size & malignancy]

Prior (expert) beliefs z,(0) about the phenomenon

Observe data Y via measurement process p(Y | 6)
[e.g. ultrasound, biopsy]

Combine prior and observed data to form posterior
distribution via Bayes’ Theorem:

m(01Y) o< p(Y | 0)mo(0)

Benefits: coherent belief updates, uncertainty
quantification, flexible modeling, and more

Extract actionable information by computing
expectations [e.g. means and standard deviations]:

E[f = [ £(O)x(0]Y)do

Computational challenges: posterior unnormalized,
high-dimensional integral
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A scalable inference framework

Canonical, reliable approximate inference:
Markov chain Monte Carlo (MCMCQC)

= A top 10 algorithm of the 20th century

Approximate expectations:

5[f(0)| Y]~ TS £(6,)

But MCMC is too slow: need to perform
expensive evaluation of p(Y | ;) at iteration t

Our scalable solution: use likelihood

approximations that...

1. Are accurate

2. Are fast to compute

3. Can be rigorously analyzed
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Likelihoods we will approximate

Types of observations

s i

o Counts - contin ou
[e.g. neural spikes] [e.g. profit] [e.g. has disease?]

Widely-adopted likelihood family: generalized linear models
e Generalization of linear regression

e Flexible, but still interpretable

[Meager 2017, Park et al. 2014, Jackson, Best & Richardson 2008] 6
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Likelihood approximation strategy

Given to us
Data Y = {y1,%2,...,uyn}, ¥n € R%, and parameter § € R?

Log-likelihood: logp(Y | 8) = S0, log p(yn | 6)

p(Y | 0)

We construct approximate sufficient statistics

Reparameterization function n(6) € R*

Sufficient statistic function  7(y.) € R”

Log-likelihood approximation logp(y, | 8) ~n(0) - 7(yn)

Resulting approximation

logp(Y | 0) ~logp(Y | 0) :=n(0) - S0, 7(yn)
N’
T(Y')
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Constructing polynomial approximate
sufficient statistics (PASS)

Likelihood Approximation

Reparameterization function 7n(#) € R”
Sufficient statistic function  7(y,) € R”
Log-likelihood approximation logp(Y | 6) = n(6) - S0 7(yn)
How do we choose » and z?
Each component a polynomial: 7n(8), € poly(0), 7(y. )¢ € poly(yn)
Why polynomials?
1. Computationally convenient

2. Can approximate any smooth function

3. Approximation properties are well-understood
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Polynomial approximations
very accurate

AR 4

[e.g. neural spikes]
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-20 0
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[H, Adams & Broderick 2017, Zoltowski & Pillow 2018] 10
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Fast, accurate empirical
performance

Fast distributed computation

130
., PASS
2 64 more
faster § S accurate
O 32
(/p]
16

1 2 4 8 16 22
cores

more computation

* Logistic regression .

e 6 million observations with .
1,000 covariates

e MCMC: 1+ days o

Fast and accurate

1.0
S
o MCMC
(D)
O 0.1
C
2 PASS
©
" oor | /
001 Laplace
1 10 100
seconds
faster

Logistic regression

350,000 observations with
127 covariates

Good mean estimation and
predictive performance too
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Fast, accurate empirical
performance

Neuroscience application
[Zoltowski & Pillow 2018]

 Poisson regression

e Full dataset doesn’t fit in RAM:
2 billion spike count bins

e Compared to Laplace, PASS was:
e 60x faster
 1000x memory reduction

e Essentially no loss of accuracy

11
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What about the next dataset?

Goal: Can we prove that PASS (or 5 10
another likelihood approximation) o MCMC
will be accurate? % 11 Sass
If not, unsure if method is reliable S 0.0 / Laplace
1 10 100
seconds

What’s useful notion of accuracy?
What d_o we_ want from the T (0]Y)
approximation? >

‘n
* Point estimate: mean g \

|
* Uncertainty: standard deviation 0 s
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Convenient...but meaningful?

 Goal: good mean and standard deviation estimates

e Computationally convenient: Kullback-Leibler divergence

q(0) q(0) |

KL(g||m) = E, |log = [, |log - constant
i =Ea 082 Ty | =50 8 pv [ 0)mo0).
Proposition [HKCB18] Proposition [HKCB18]
There exist ¢ and 7 such that For Gaussians g and 7 such that
stdev(q) = 1 and stdev(w) = oo stdev(q) =1, it is possible that

but KL(q||)

KL(g||7) < 1 | mean(q) — mean(r)| = e

15
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Meaningful...but convenient?

Better approximation properties: Wasserstein distance

W(r,¢)2 = inf / 16 — 6] 27(d6, 46

vel'(m,q)

Theorem [HKCB18]

mean(7) — mean(q)| < W(, q)
stdev(m) — stdev(q)| < 2W(, q)

 But, cannot compute Wasserstein distance efficiently

 Goal: computational efficiency of Kullback-Leibler divergence

and guarantees of Wasserstein distance
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A meaningful and convenient
accuracy measure

Many Wasserstein guarantees for MCMC...

...but not for likelihood approximations

m(01Y) o< p(Y | 0)mo(6) v

q(0) V log ¢(6)

n-Fisher distance: F, (m,q) =

logm(0]Y) = Vlogp(Y |0)mo(0)

) 1/2
D [HVIogW — Vlogq||§} /

Theorem [HZ17, HKCB18]

W(r,q) < C(q)C"(n,m)Fy(m, q)
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1
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Application: PASS reliably provides a
high-quality approximation
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Application: PASS reliably provides a
high-quality approximation

Theorem [HAB17]

60 | \
40 | "irhd / Let g5 = the PASS approximate
20 | A{' posterior using degree M polynomials.
%
0 pememm==="" Then the Wasserstein distance
20— decreases exponentially in M:

variance error

W(T‘-v QM) < cr™

1.0
MCMC  Benefit: confidence to use PASS with a new
0.1
PASS dataset
0.01 ./ Laplace e Can also use n-Fisher distance to prove
1 10 100 accuracy bounds for other likelihood
seconds approximations (e.g. Laplace approximation

and coresets).
H H 18
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Is that heuristic approximation any
good?

Goals

1. approximation quality
qr ~ i

2. algorithm selection

* versus ‘

Approach: use a discrepancy measure d(7, gr)

e Goal 1:isd(w,qr)

e Goal 2:isd(m,qr) or d(m, qr) smaller?

H

I
a4

o
*

o o UT
*

m(01Y)

07?

21
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Approach: Stein discrepancies

# of papers using the phrase “Stein discrepancy”
70

53
35

18

0
2014 2015 2016 2017 2018

Definition We provide the first

d(W, CJT) s theoretically sound discrepancy measure that is

if it detects (non-)convergence v fast

of gr — mas T — o0 v theoretically sound

[Gorham & Mackey 2015, H & Mackey 2018] 22



Dilemma: soundness or speed

gr =T"1 Zthl 0, kernel k : R x R - R
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gr =T"1 Zthl 0, kernel k : R x R - R

Theoretically sound approach: kernel Stein discrepancies (KSDs)
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* Stein operator: T_(g)(0) = %(9) + g(@)dlggﬂ(é’)

e But too slow: O(72) time
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Random feature Stein discrepancies:
fast and theoretically sound

Our solution: design Stein discrepancy from the start for use
with importance sampling

Feature Stein discrepancies are theoretically sound:

®SDg (7, qr) = /{T_lzz;lﬂ(b(ﬁt,z)}rdz

12/r

Random feature Stein discrepancies are importance sampled approximations:

M ; LT rq2/r
R®SDa - (m, gr) = | M~ Sy 0(Zn) " {1 ST (00, Zn) | |
Recall: ©(MT') time complexity when using M importance samples

Theorem [HM18]

For any a > 0, we can compute a theoretically sound random

feature Stein discrepancy using M = ©(T“) importance samples
in near-linear O(T17%) time.
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Inference algorithm
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Application #2: goodness-of-fit testing
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Application #2: goodness-of-fit testing

m(0]Y)
’o o UT

e Question: g ~ 7"

e Power = probability of
correctly rejecting null

o 7 = standard Gaussian

Laplace distribution Student’s t distribution
1.0
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quadratic-time

o) quadratic-time n
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o
linear-time linear-time
.................. methods : ... methods
0.0 10 20 0.0 10 20
dimension D dimension D
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[e.g. phylogenetic trees]
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e |ikelihood approximations for
PDE-based models [e.g. climate
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